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Abstract

Motivation: The elucidation of all inter-protein interactions would significantly enhance our knowledge of cellular
processes at a molecular level. Given the enormity of the problem, the expenses and limitations of experimental
methods, it is imperative that this problem is tackled computationally. In silico predictions of protein interactions en-
tail sampling different conformations of the purported complex and then scoring these to assess for interaction via-
bility. In this study, we have devised a new scheme for scoring protein–protein interactions.

Results: Our method, PIZSA (Protein Interaction Z-Score Assessment), is a binary classification scheme for identifi-
cation of native protein quaternary assemblies (binders/nonbinders) based on statistical potentials. The scoring
scheme incorporates residue–residue contact preference on the interface with per residue-pair atomic contributions
and accounts for clashes. PIZSA can accurately discriminate between native and non-native structural conforma-
tions from protein docking experiments and outperform other contact-based potential scoring functions. The
method has been extensively benchmarked and is among the top 6 methods, outperforming 31 other statistical,
physics based and machine learning scoring schemes. The PIZSA potentials can also distinguish crystallization arti-
facts from biological interactions.

Availability and implementation: PIZSA is implemented as a web server at http://cospi.iiserpune.ac.in/pizsa and can
be downloaded as a standalone package from http://cospi.iiserpune.ac.in/pizsa/Download/Download.html.

Contact: madhusudhan@iiserpune.ac.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins, often referred to as ‘biology’s workforce’, rarely act in iso-
lation. More than 80% of all proteins in a cell interact with one an-
other and with other biomolecules to bring about cellular functions
such as mediating signal transduction, translating energy to physical
motion, immunological response, enzymatic reactions and a host of
other cellular processes (Berggård et al., 2007). Proteins function in
a crowded cellular environment, diffusing randomly and colliding
with one another. Only a small fraction of these collisions results in
biologically meaningful associations. Disrupting or interfering with
these associations or complexes could lead to disease conditions
such as cancer or neurodegenerative conditions in humans
(Kuzmanov and Emili, 2013; Ryan and Matthews, 2005).
Unsurprisingly, identification and characterization of protein–pro-
tein interactions (PPIs) is a fundamental problem in biology that is a
necessary step for a complete understanding of the full repertoire of

cellular pathways (Stelzl et al., 2005; Vazquez et al., 2003; Zhang
et al., 2012).

A variety of experimental methods, based on either biophysical,
biochemical or genetic principles have been developed to detect PPIs
(see Zhou et al., 2016 for a comprehensive review). These methods,
however, are expensive, labor-intensive, and often have additional
limitations. Hence, there is considerable interest toward the develop-
ment of computational approaches to predict and analyze PPIs
(Aloy and Russell, 2006). The computational predictions usually
have to surmount two challenges—sampling and scoring. While dif-
ferent computational approaches are utilized in constructing plaus-
ible models (sampling) of interacting proteins (see Soni and
Madhusudhan, 2017 for a review of methods), a crucial aspect of
these predictions is to correctly recognize (scoring) the native (or
near-native) interaction from among the models sampled. Ideally,
the scoring scheme would rank-order the predicted conformations
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to match what is or should be experimentally observed. Scoring
schemes are usually based on free energy calculations incorporating
different atomic interactions (Lyskov and Gray, 2008; Pierce and

Weng, 2007) or on statistical methods (also referred to as statistical
potentials) that extract information from known protein interac-

tions (Huang and Zou, 2008; Liu and Vakser, 2011; Rykunov and
Fiser, 2010). Some scoring scheme even combine these two methods
(Zimmermann et al., 2012). In addition to this, there are machine

learning techniques to score/evaluate possible interactions confor-
mations (Bordner and Gorin, 2007).

The premise of the statistical potentials is that the ratio of an ob-
servation (of interaction) to its expectation is indicative of inter-

action strength. The higher the ratio, the greater is the binding
energy. The key to these computations is in making a precise esti-
mate of the expectation value. The initial methods were simple and

attempted to convert the observed/expected ratios into free energies
(Sippl, 1995; Tanaka and Scheraga, 1976). These potentials got in-
creasingly more nuanced with the inclusion of additional considera-

tions, such as solvent effects and Lennard-Jones potentials
(Miyazawa and Jernigan, 1996; Tovchigrechko and Vakser, 2006).

In this study, we have devised a new statistical potential. Here,
we derive amino acid interaction preference matrices from 3D pro-

tein structures in the Protein Data Bank (PDB) (Berman et al.,
2000). We use these preference matrices to propose a new scoring
function for the binary classification of protein assembly stability as

well as for rank-ordering different docking poses for a given protein
complex. We refer to the binary classification algorithm as PIZSA

for Protein Interaction Z-Score Assessment. Our potential function
explicitly includes local geometry and interface propensities while
also incorporating the strength of individual residue pair interac-

tions and accounting for clashes. The expected probability function
in our formulation also accounts for the relative abundance of dif-

ferent amino acid residues leading to a more appropriate reference
state. We compare our scoring function to the CIPS (Nadalin and
Carbone, 2018) potential in their abilities to discriminate between

native and near-native protein complex structures from the
Dockground Decoy Set (Kundrotas et al., 2018), CAPRI Score_set
(Lensink and Wodak, 2014) and report an improvement in discrim-

inatory performance. In this study, we have also tested the ability of
PIZSA in detecting near-native structures and compared its perform-

ance in comparison with several other methods. Our potential could
also be used to discriminate between biologically meaningful interfa-
ces from crystal artifacts with true- and false positive rates (TPR and

FPR) of 69% and 18%, respectively. In this, PIZSA’s ability of iden-
tifying crystal artifacts is comparable to that of the de facto standard

PISA (Krissinel and Henrick, 2007).

2 Materials and methods

2.1 Datasets used for construction of statistical

potentials
2.1.1 Construction of residue pairing preference matrices

Protein–protein interface residue pairing preference matrices were
constructed from the 3D structural data of dimeric protein com-

plexes retrieved from the PDB (Berman et al., 2000). A set of dimeric
proteins was retrieved from PDBe PISA web server (Krissinel and

Henrick, 2007; Velankar et al., 2016). The dataset was culled using
the PISCES (Wang and Dunbrack Jr, 2003) web server to eliminate
redundancy and retain structures with a maximum sequence identity

of 40%, a minimum resolution of 3Å and a maximum R-factor of
0.3. Complexes with unknown amino acids at the interface were

eliminated. After culling, the dataset reduced from 40 073 to a set of
4913 dimeric complexes (Supplementary S1). In our dataset, 81%
(3987) and 19% (926) of the complexes are homo- and hetero-

dimers, respectively. This closely matches the fraction of homodi-
meric (80%) and heterodimeric (20%) protein complexes in the
PISA database (Velankar et al., 2016).

2.1.2 Binary classification

Protein associations are classified as native crystallographic interface
or docking decoys by calculating Z-scores. The background distribu-
tion for the calculation of Z-scores was estimated using 1000 decoy
structures of 351 native protein complexes from the Dockground
Docking Decoy Set 2 (Kundrotas et al., 2018). This set of precalcu-
lated scores is used as the background for all Z-score calculations.
The classification performance was tested on Dockground Docking
Decoy Set 1 (Kundrotas et al., 2018), comprising 61 native com-
plexes with 100 decoys for each native complex. The two
Dockground Docking Decoy Sets share 17 targets but the decoys
have been constructed from different unbound X-ray structures in
different docking experiments.

2.1.3 Ranking native and near-native complexes

The ability to rank native complexes amongst the best scoring inter-
actions was benchmarked using the CAPRI Score_set (Lensink and
Wodak, 2014) and both the Dockground Docking Decoy Sets. The
CAPRI Score_set consists of 13 dimeric and 2 trimeric target com-
plexes. Only 322 of 351 targets in Dockground Docking Decoy Set
2 were used for benchmarking as 26 targets had decoys with nonca-
nonical atom names and 3 targets had decoys that we were unable
to score using CIPS (Supplementary S2). It should be noted that
using the Dockground Docking Decoy Set 2 for calculating the back-
ground scores does not affect the rank-ordering on the same set as it
is independent of the background and proportional to the normal-
ized raw score (Equation 9).

Our ability to rank near-native complexes was evaluated on the
Dockground Docking Decoy Set 1, ZDock Protein-Protein Docking
Benchmark 4 (Hwang et al., 2010) and decoy sets created from
Protein-Protein Docking Benchmark 5 (Vreven et al., 2015) targets
using various docking tools. Models for Protein-Protein Docking
Benchmark 5 were constructed with SwarmDock (Torchala et al.,
2013), pyDock (Cheng et al., 2007), ZDock (Pierce et al., 2014) and
HADDOCK (Dominguez et al., 2003). Two hundred models per
target were generated for constructing the ZDock Protein-Protein
Docking Benchmark 4 decoy set using the ZDock 3.0.2, 6 degree
sampling set. Docking software-specific decoy sets for Protein-
Protein Docking Benchmark 5 targets were acquired from SBGrid
Data Bank (Geng et al., 2020). Near-natives from the Dockground
Docking Decoy Set 1 and ZDock Protein-Protein Docking
Benchmark 4 were identified as models with ligand RMSD <5Å.
Decoys from CAPRI Score_set and the docking software-specific
sets of Protein-Protein Docking Benchmark 5 targets were identified
as near-native decoys if they were of acceptable- or higher-quality
(medium/high) models as classified by the CAPRI criteria. These
decoys were preclustered, as reported in Geng et al. (2020), and the
top two best scoring models from the top five clusters were selected
for evaluation. In case of the Dockground Docking Decoy Set 1 and
ZDock Protein-Protein Docking Benchmark 4, top 10 best scoring
models were chosen for evaluation. The docking software-specific
decoy sets from SBGrid Data Bank contain �125–500 decoys with
an average of 378 decoys per case (Geng et al., 2020).

2.1.4 Identification of crystal artifacts

We tested the ability of our potentials to distinguish between bio-
logically meaningful interactions and crystal packing artifacts on
two datasets (Bahadur et al., 2004; Duarte et al., 2012). The
‘Duarte’ dataset (Duarte et al., 2012), consisting of 81 biological
interactions (DCbio) and 82 crystal contacts (DCxtal) was used to
optimize the classification threshold. Classification performance
was tested on 88 crystal contact structures from the ‘Bahadur’ data-
set (Bahadur et al., 2004) (Supplementary S3).

2.2 Construction of the composite scoring functions
2.2.1 Scoring function

Scoring matrices were constructed from the ratio of observed proba-
bilities of interface residue pairs to their expected probabilities of oc-
currence at the interface. Two residues from different protein chains
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are identified as an interface residue pair if one or more atoms from
one residue is within a threshold distance from atoms of the other
residue. The score S0ij for a residue pair ij is calculated as:

S0ij ¼ log 2
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where aij�k (Equation 3) is the atomic propensity of interface residue
pair ij with k number of atoms. ab is any interface residue pair and c
is the number of atoms involved in any interface residue pair inter-
action. x and y are different instances of residue pairs ij and ab, re-
spectively. hbii and hbji are the average atomic propensities of
interface residues i and j, respectively. fi and fj are the frequencies of
interface residues i and j, respectively. All frequencies are observed
counts of occurrence. cij is the abundance normalization term for
residue pair ij. N is the total number of interfaces and int is any
interface. The abundance normalization term cij is calculated as:

cij ¼
0:05

fi=ni
� 0:05

fj=nj
; (2)

where ni and nj are the total number of residues in the monomeric
subunits of residues i and j, respectively. The uniform probability of
occurrence for any residue is 0.05 (1/20).

The atomic propensity, aij�k of an interface residue pair ij with k
number of atoms within a threshold distance is calculated as:

aij�k ¼
P
8intfij�k=

P
8int8cfij�cP

8intfk=
P
8int8cfc

; (3)

where fij�k is the frequency of residue pair ij with k number of
atoms. fk is the frequency of any residue pair with k number of
atoms and c is any number of atoms observed in interactions.

Three different scoring matrices were constructed using only
main chain atoms, side chain atoms or main chain/side chain atoms
exclusive from each residue partner. Favorable interface residue
pairs have positive scores whereas unfavorable interface residue
pairs have negative scores. Variants of the scoring matrices were
constructed at distance thresholds of 4, 6 and 8Å.

2.2.2 Scoring protein–protein complexes

A raw score (Scomplex) is assigned to a protein complex by summing
up the individual weighted residue pair scores over the interface.
Each residue pair receives a score (Sall

ij ) that is a linear combination
of the main chain (Smm

ij ), side chain (Sss
ij ) and main chain/side chain

(Sms
ij ) interaction score. Each component of the residue pair score is

weighted with a clash penalty as:

Sij ¼ f
S0ij � dij S0ij > 0

S0ij � d�1
ij S0ij < 0

; (4)

Sall
ij ¼ Smm

ij þ Sms
ij þ Sss

ij ; (5)

Scomplex ¼
X

ij

Sall
ij ; (6)

where S0ij is the unweighted score from any of the three scoring
matrices. Favorable residue pair interactions have positive S0ij where-
as unfavorable residue pair interactions have negative S0ij. dij is the
clash penalty for residue pair ij and has values between 0 and 1.
Since S0ij can be either positive or negative, we multiply or divide S0ij
by dij, respectively, such that the scaling factor always penalizes the
score when interactions have steric clashes (dij < 1). Smm

ij ; Sss
ij ; Sms

ij

and Sall
ij are the weighted main chain, side chain, main chain/side

chain and all atom interaction scores, respectively. Scomplex is the
raw score of the protein complex.

Clash penalty dij is a measure of the severity of atomic clashes in
a residue pair interaction. It ranges from 0 for severe clashes to 1 for
no clashes and is calculated as:

dij ¼ 1� 1

1þ e16�188x
; (7)

where,
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(
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(8)

where x is the maximum overlap fraction between interacting atoms
that varies from 0 to 1 and is set to 0 when there is no overlap.
vdwijatompair

is the sum of the van der Waals radii of interacting atom
pairs and dijatompair

is the Euclidean distance between the interacting
atom pairs. Atom pairs that have hydrogen bond donor and accept-
or atoms are identified. Such hydrogen bonded atom pairs have an
additional tolerance of 0.4Å. The sigmoidal function used as the
clash penalty has been optimized to penalize 20% of the highest
overlap fractions observed in the training set such that least number
of native complexes are predicted as unstable associations
(Supplementary S4).

2.3 Binary classification for the stability of protein

complexes
The residue preference matrices constructed above were employed
to classify protein complexes as native crystallographic interface or
docking decoys. To account for the effect of interface size, raw
scores for each complex were further normalized by the number of
interacting residue pairs (Equation 9). Z-score is a measure of how
likely a protein complex is to form a native association in contrast
to interactions from random docking poses. A protein complex is
predicted to be a native crystallographic interface if the Z-score is
greater than a threshold. The Z-score of protein complexes is calcu-
lated as:

Snorm
complex ¼

Scomplex

nrespairs
; (9)

Z� score ¼
Snorm

complex � hSnorm
decoysi

rdecoys
; (10)

where Snorm
complex is the normalized raw score for a protein complex.

nrespairs is the number of interacting residue pairs observed in the
protein complex. hSnorm

decoysi and rdecoys are the average and standard
deviation of normalized raw scores precalculated from background
decoys (Dockground Docking Decoy Set 2).

The background distribution for the calculation of Z-scores was
estimated using 1000 decoy structures of 336 native protein com-
plexes from the Dockground Docking Decoy Set 2 (Kundrotas et al.,
2018). Receiver operator characteristic (ROC) curves were con-
structed to estimate the observed FPR and TPR at different Z-score
thresholds and different distance thresholds. ROCs were then inte-
grated to calculate the area under the curve and identify the operat-
ing points. Z-scores with operating points closest to (0, 1) in the
ROC curves were chosen as optimal binary classification thresholds
to maximize the TPR and minimize the FPR. Classification perform-
ance was tested on Dockground Docking Decoy Set 1 and evaluated
in terms of accuracy, balanced accuracy and a modified Matthews
correlation coefficient (MCC) (Equation 11). Scoring PPIs with
PIZSA took 1.13 s per model on average on a single core of a
2.60 GHz IntelV

R

CoreTM i7-3720QM CPU.

MCC

¼ TPR� TNR� FPR� FNRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPRþ FPRÞ � ðTPRþ FNRÞ � ðTNRþ FPRÞ � ðTNRþ FNRÞ

p ;

(11)

where TPR is true-positive rate, FPR is false-positive rate, TNR is
true-negative rate and FNR is false-negative rate.
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2.4 Binding mode selection
The ability of our potential to select the proper binding mode when
multiple alternative binding interfaces are present has been illus-
trated with a case study. The antigen-binding fragment of camelid
antibodies are composed of a single, heavy chain antibody VH do-
main (VHH). Structures of three different dromedary VHH domains
bound to porcine pancreatic a-amylase (PPA) at nonoverlapping or-
thogonal sites have been deposited in the PDB (Desmyter et al.,
2002). 3D structures of non-native binding modes were constructed
with homology modeling using MODELLER v9.15 (Davis et al.,
2006; �Sali and Blundell, 1993) (Supplementary S5). Structures of
camelid VHH domains AMB7, AMD9 and AMD10 bound to PPA
(PDB codes: 1KXT, 1KXV and 1KZQ, respectively) were evaluated
for each VHH–PPA complex using the PIZSA potential.

2.5 Identification of crystallization artifacts
We used the fraction of interactions with optimal atomic propen-
sities (afraction) as a measure to distinguish biological interactions
from crystallization artifacts (Equation 12).

afraction ¼
noptimal

ntotal
; (12)

where noptimal is the number of interactions with aij�k > 1 and ntotal

is the total number of interactions at the interface. The classification
performance was optimized on the ‘Duarte’ dataset. ROC curves
with different afraction cutoffs were assessed to identify the classifica-
tion operating point. Classification accuracy was tested on the
‘Bahadur’ dataset and compared with that of PISA.

3 Results

3.1 Construction of the statistical potential matrices
Amino acid pairing propensities capture the likelihood that amino
acids i and j interact across a protein–protein interface. We con-
structed such propensity matrices defined for different atomic inter-
action categories (main chain–main chain, side chain–side chain and
main chain–side chain) at three different distance thresholds (4, 6
and 8Å) (Supplementary S6). The number of favorable amino acid
pairs at the interface, at distance thresholds of 4 and 6Å, was highest
for the side chain–side chain mode of interaction followed by main
chain–side chain and main chain–main chain interaction. For ex-
ample, at 4Å, 50% (105 out of 210) of the side chain–side chain,
13.8% (55 out of 400) of the main chain–side chain and 1% (2 out
of 210) of the main chain–main chain amino acid pairs were favor-
able. However, at 8Å, main chain–main chain interactions (86.2%,
181 out of 210) have the most prevalent number of favorable amino
acid pairs followed by side chain–side chain (74.8%, 157 out of
210) and main chain–side chain interactions (58.8%, 235 out of
400). The number of favorable amino acid pairs increases with an
increase in distance cutoff. For example, with an increase in distance
cutoff from 4 to 6Å and 8Å the number of favorable side chain–side
chain pairs increases from 50% to 68.6% and 74.8%; main chain–
side chain increases from 13.8% to 46% and 58.8%; main chain–
main chain increases from 1% to 39.5% and 86.2%, respectively.
At distance cutoffs of 4 and 6Å, side chain–side chain mode of inter-
action contributed the most, as most interactions on the interface
were side chain mediated. For example, at 4Å distance cutoff 59%
of the interactions were of the side chain–side chain type whereas
the main chain–side chain and main chain–main chain account for
33% and 8% of the interactions, respectively.

Since the residue pairing preferences across different modes of
interaction were not identical, we identified the contribution from
all different modes separately. Furthermore, we estimated the distri-
bution of the number of atomic contacts shared by each residue–
residue interaction on the interface and found that many residue
pairs have a strong tendency to interact with a preferred number of
atomic contacts. Our propensity scores account for this optimal
number of atomic contacts (aij�k, Equation 3). The atomic propen-
sities (aij�k) are an observed by expected ratio of the probability that

an interaction between residues i and j is mediated by k number of
atomic contacts. The expected probability that any residue pair
interacts through k number of atoms declines exponentially with
increasing number of atoms. The observed probability distribution
fits the expected probability distribution closely for some residue
pairs but for other residue pairs the observed probabilities are much
higher than their expected probabilities for a certain number of
interacting atoms. For example, the observed and expected prob-
ability distributions match closely for the ASP–PHE residue pairs
whereas ARG–GLU pairs tend to have 6–8 atomic contacts (6 being
the highest) at 4Å distance cutoff and side chain–side chain mode of
interaction. Interactions with atomic propensities above 1 (observed
probabilities higher than the expected) indicate favorable number of
atomic contacts whereas those below 1 (observed probabilities
lower than the expected) indicate suboptimal number of atomic con-
tacts (Fig. 1, Supplementary S7). ARG–GLU amino acid pairs have
higher observed probabilities for 6–8 atomic interactions as com-
pared to what is expected (Fig. 1). Also, ARG–GLU pairs with 2–4
atomic interactions are suboptimal as indicated by the lower
observed probability when compared to the expected (Fig. 1).

The amino acid pairing preferences exhibited by the PIZSA scor-
ing matrices are qualitatively similar across the three distance
thresholds and suggest that: (i) oppositely charged residues have a
strong tendency to pair across the interface with a large overlap of
atomic contacts, (ii) residues with aromatic rings (HIS, TRP, TYR
and PHE) have favorable interactions with most amino acids indi-
cating they play a crucial role on interfaces, (iii) interactions among
hydrophobic residues were less favorable at 4Å but more favorable
at 6 and 8Å, especially for the side chain–side chain potentials. The
side chain–side chain propensity matrices show the highest degree of
specificity, followed by the main chain–side chain matrices and then
the main chain–main chain matrices across the three distance thresh-
olds. Top three highest scoring residue pairs in the main chain–main
chain and main chain–side chain matrices were HIS–HIS, TRP–TRP
and CYS–CYS in no particular order. In the side chain–side chain
matrices, the top three scoring amino acid pairs included CYS–CYS,
ASN–ASN and HIS–TYR at 4Å, GLN–GLN, HIS–TYR and HIS–
HIS at 6Å and HIS–TYR, HIS–HIS and MET–MET at 8Å. Side
chain matrices accounted for many high scoring residue pairs with
diverse interaction types. For example, electrostatically interacting
residue pairs such as ARG–GLU, hydrogen bonding interactions
such as ASN–ASN, p–p stacking, such as TRP–TYR, cation–p inter-
actions, such as HIS–ARG and hydrophobic interactions, such as
ILE–PHE. ALA and VAL, had the least number of favorable interac-
tions in all cases. Smaller amino acids, such as SER, THR, PRO, had
less favorable interactions except in case of their main chain–main
chain interactions at 8Å whereas larger amino acids, such as GLU,
ILE, LEU and LYS, had less favorable main chain–main chain inter-
actions. Interestingly, THR favorably interacts with ARG, ASN,

Fig. 1. The observed (closed circle, multiplication sign) and expected (dotted line)

probability distribution profile of the number of atoms mediating residue pair inter-

actions in ARG–GLU and ASP–PHE
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ASP, GLN and HIS at 4Å, whereas the closely related SER favorably
interacts only with ASN, ASP and HIS. CYS–CYS interactions were
less favorable in side chain–side chain matrices at 6 and 8Å, whereas
they were amongst the highest scoring interactions in all other matri-
ces. Side chain–side chain interactions of large aliphatic amino acids
LEU and ILE were favorable at 6 and 8Å. Interestingly, ARG–ARG
interactions were favorable in side chain–side chain matrices at all
distance thresholds.

3.2 Binary classification of protein complexes
Our scoring matrices describe individual residue pairing preferences
on the interface. On an interface containing several interacting resi-
due pairs, we use pair preference values from our scoring matrices in
the form of a Z-score to identify native protein–protein associations
and discriminate them from interactions arising from random dock-
ing poses. Optimum Z-score thresholds for classification of protein
complexes as native crystallographic interfaces or docking decoys
were obtained by analyzing ROC curves (Supplementary S8). The
area under the ROC curves was 0.98, 0.92 and 0.87 for distance
thresholds of 4, 6 and 8Å, respectively. Optimal Z-score thresholds
for distance cutoffs of 4, 6 and 8Å are 1.72, 0.92 and 0.76, respect-
ively. The TPR and FPR at optimal Z-score thresholds are 94.6%
and 4.7% for 4Å, 88.6% and 18.1% for 6Å, 83.1% and 23.4% for
8Å, respectively. For all further analyses we used 4Å as the distance
cutoff as it had the highest TPR and lowest FPRs of classification.

We tested the classification accuracy of PIZSA on the
Dockground Docking Decoy Set 1, which comprises of 61 protein
complexes with 100 decoy conformation for every native conform-
ation. As this testing set is skewed with respect to the ratio of posi-
tives to negatives (1:100), we evaluated the performance by
estimating the accuracy, balanced accuracy and a modified MCC as
described in Section 2. PIZSA was able to correctly predict 58 out of
61 natives as native crystallographic interfaces with an accuracy of
0.80, a balanced accuracy of 0.87 and an MCC of 0.75
(Supplementary S9).

3.3 Identification of native/near-native protein com-

plexes and comparison with CIPS potentials
Recently, a new amino acid pairwise interaction potential, CIPS
(Nadalin and Carbone, 2018), was proposed to rank-order different
docking configurations. It takes into account a contact-based meas-
ure that weighs residue pairing frequencies by the number of atomic
contacts shared between the residue pair. When compared to three
previously published residue preference matrices (Glaser et al.,
2001; Mezei, 2015; Pons et al., 2011), CIPS was found to be better
at discriminating high-quality structural models from decoys than
others.

In this article, we compare ourselves with CIPS as they have been
shown to outperform three other statistical potentials in rank-
ordering PPI complexes. Our method differs from that of CIPS in
five essential ways: (i) we have constructed three mutually exclusive
amino acids preference matrices that categorize interactions accord-
ing to the type of atoms involved in an interaction; (ii) we do not
make use of explicit solvent accessibility calculation and the amino
acids preferences are solely based on the distribution of residues and
their interacting atoms in Euclidean space; (iii) we account for atom-
ic propensities similar to CIPS’ contact propensity but with a com-
pletely different reference state; (iv) we have introduced a penalty
for steric clashes that scales scores according to the severity of the
clash; and lastly (v) we have introduced a measure that classifies a
protein–protein complex as a native crystallographic interface or
docking decoy. We also compare ourselves with recently published
scoring functions GraphRank and iScore that have been reported to
perform as good as or even better than current state-of-the-art meth-
ods (Geng et al., 2020). Both GraphRank and iScore are graph
kernel-based scoring functions that use evolutionary information
with additional energetic terms in the case of iScore (Geng et al.,
2020). We evaluate our performance in docking software-specific
decoy sets as well as the CAPRI Score_set that has been constructed
from decoys generated using various different docking methods.

3.3.1 Performance on docking software-specific decoy sets

Protein docking experiments aim to predict biologically meaningful
interactions. This is usually achieved with the help of a scoring func-
tion that utilizes features of interfaces such that native/near-native
complexes score optimally. One class of such scoring functions,
employed by both PIZSA and CIPS, make use of amino acid contact
propensities derived from known structures of protein complexes.
Previously, CIPS had compared the performance of their scoring
scheme to other scoring schemes (Glaser et al., 2001; Mezei, 2015;
Pons et al., 2011) on the Dockground Docking Decoy Sets and
CAPRI decoy sets. Here, we compare the performance of PIZSA to
CIPS on docking software-specific decoy sets such as the
Dockground Docking Decoy Set and the ZDock Protein-Protein
Docking Benchmark 4.0. We further evaluate our performance on
decoys generated from targets of the Protein-Protein Docking
Benchmark 5.0 using various docking software. We compare our
performance with that of CIPS, GraphRank, iScore and the scoring
functions of respective docking software used for generating decoys
(Geng et al., 2020).

The ability of PIZSA pair potentials to discriminate the native
structural conformation was compared with CIPS potentials on two
testing sets comprising of 61 and 322 native structures with 100
decoy structures each from the Dockground Docking Decoy Sets 1
and 2, respectively (Supplementary S10). PIZSA ranked the target
complexes, from the Dockground Docking Decoy Set 1, as the best
(Rank 1), or in top 3, 5 or 10 ranks for 51 (84%), 54 (89%), 56
(92%) and 57 (93%) protein complexes, respectively. The corre-
sponding performance for CIPS was 34 (56%), 46 (75%), 47 (77%)
and 50 (82%) protein complexes, respectively. Furthermore, for in-
dividual complexes, PIZSA ranked 25 structures better than CIPS,
30 structures equal to that of CIPS and 6 structures worse than
CIPS. For 3 of 6 targets where CIPS ranks were better, PIZSA scored
the native complex (1HXY: 7, 1OPH: 2, 3FAP: 4) not more than 3
ranks below CIPS’ rank (1HXY: 6, 1OPH: 1, 3FAP: 1). On the
Dockground Docking Decoy Set 2, PIZSA ranked the target com-
plexes as the best (rank 1), in top 3, 5 and 10 ranks for 216 (67%),
298 (93%), 307 (95%) and 317 (98%) protein complexes, respect-
ively. The corresponding performance for CIPS was 107 (33%), 170
(53%), 203 (63%) and 237 (74%) protein complexes, respectively
(Fig. 2). Furthermore, PIZSA ranked 196 structures better than
CIPS, 81 structures equal to CIPS and 45 structures worse than
CIPS. For 43 of 45 targets where CIPS ranks were better, PIZSA
scored the native complex not more than 8 ranks below CIPS’ rank.
In 25 of 43 cases there was a difference of a single rank assigned by
CIPS and PIZSA.

PIZSA’s ability to identify near-native decoys was evaluated as
per the CAPRI assessment protocol in terms of the number of targets

Fig. 2. The percentile ranks assigned by PIZSA and CIPS to target complexes from

the Dockground Docking Decoy Set. Points above/below the diagonal indicate cases

where PIZSA assigned a better/worse rank than CIPS
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that have at least a single near-native structure predicted in top 10
models (Lensink et al., 2017). Near-native structures were defined
as models with ligand RMSD <5Å or according to the CAPRI crite-
ria as acceptable-, medium- or high-quality models wherever applic-
able. The Dockground Docking Decoy Set 1 has 6600 models of 61
targets, with every target having at least a single near-native model
and 505 near-natives in total. PIZSA was able to identify near-
natives in the top 10 models for 47 of 61 targets whereas CIPS iden-
tified 49 (Supplementary S17).

The ZDock Protein-Protein Benchmark 4 has 176 unique targets
categorized as easy (123), medium (29) and difficult (24) docking
models. Ninety-nine of 176 targets had at least a single near-native
model. PIZSA identified near-natives in its top 10 predictions in 48
cases whereas CIPS identified 41 (Supplementary S18). PIZSA and
CIPS identified near-natives from 10 and 8 medium/difficult targets,
respectively (Table 1). Of the 48 hits identified by PIZSA, 16 were
classified as enzyme inhibitor/substrate complexes, 7 as antigen–
antibody complexes and 25 as other types of complexes. We also
compared PIZSA’s ability to identify near-native models from decoy
sets generated using SwarmDock, pyDock, ZDock and HADDOCK
using targets from Protein-Protein Docking Benchmark 5 (Geng et
al., 2020). Our method was compared with CIPS, GraphRank,
iScore and the scoring function of the respective docking method
used for creating the decoy set (Table 2, Supplementary S19). As
mentioned earlier, the performance is evaluated according to the
CAPRI criteria as the number of targets that have at least a single
near-native structure (acceptable- or higher-quality models) in the
top 10 predicted models. PIZSA outperforms CIPS in 2 of 4 decoy
sets by identifying near-natives for 1 and 2 more targets in the
SwarmDock and pyDock decoy sets, respectively. Although both
PIZSA and CIPS perform equally on the HADDOCK decoy set,
PIZSA identifies medium-quality models in two targets (3K75,
3PC8; Supplementary S19) whereas CIPS identifies only in one
(3PC8; Supplementary S19). PIZSA and GraphRank outperform
each other in a single decoy set (SwarmDock and pyDock, respect-
ively). iScore identifies more targets with near-natives, as compared
to PIZSA, in two decoy sets (pyDock and ZDock) and identifies the
same number of targets with near-natives in the others (SwarmDock
and HADDOCK). GraphRank and iScore also identify a greater
number of medium-/high-quality models in cases where they per-
form equally with PIZSA. The two machine learning algorithms
GraphRank and iScore perform better than the statistical potentials,
CIPS and PIZSA on this benchmark. However, PIZSA identifies
more near-natives or better quality near-natives in comparison to a
similar method CIPS for most cases.

3.3.2 Performance on the CAPRI Score_set

The consolidated benchmark set made available from the CAPRI
experiments (CAPRI Score_set) serves as another independent decoy
set to benchmark the rank-ordering abilities of scoring functions.
The benchmark set contains roughly 19 000 predicted complexes
for 15 published CAPRI targets, of which 13 are dimeric complexes
and 2 are trimeric complexes (Lensink and Wodak, 2014). Once
again we compared our performance in rank-ordering the native
complexes with that of CIPS. The percentile ranks for the 15 targets
assigned by PIZSA and CIPS are reported in Table 3. PIZSA assigns
better ranks than CIPS for 10 out of 15 targets with 7 native targets
ranked in the top 10 percentile and all the native targets ranked in
the top 22 percentile. CIPS in comparison assigns top 10 percentile
ranks to 4 target structures.

The CAPRI Score_set classifies protein complex decoys into
high-, medium- and acceptable-quality models by filtering through a
set of criteria, such as the fraction of native and non-native contacts,
number of clashes, ligand/receptor/interface RMSD, misorientation
angle and residual displacement (Lensink and Wodak, 2014). We
used this set of models to test PIZSA’s ability to identify ‘near-na-
tive’ complexes. PIZSA was able to identify 188 near-native com-
plexes within the top 100 scoring decoys from either of the target
sets whereas CIPS identified 149 complexes. Although both PIZSA
and CIPS identified similar number (13 and 14, respectively) of
near-natives in the top 10 ranking decoys, PIZSA was able to iden-
tify all three classes of near-natives (4 high, 6 medium and 3 accept-
able), whereas CIPS did not identify any high-quality models in the
top 10 ranked decoys (0 high, 5 medium and 9 acceptable).
Furthermore, PIZSA ranks 6 (1.3%) and 152 (32.6%) high-quality
models, 12 (1.7%) and 246 (34.2%) medium-quality models, 4
(0.6%) and 301 (42.3%) acceptable-quality models in the top 1%
and 25% of decoys, respectively. CIPS ranks 0 and 152 (32.6%)
high-quality models, 10 (1.4%) and 293 (40.7%) medium-quality
models, 18 (2.5%) and 238 (33.5%) acceptable-quality models in
the top 1% and 25% of decoys, respectively (Supplementary S11).
Furthermore, we tested our ability to identify near-native models
from the CAPRI Score_set by following the CAPRI assessment crite-
ria of submitting 10 predictions per target. Scoring performance is
evaluated as the number of targets with one or more acceptable- or
higher-quality models in the selected predictions. A summary of our
performance in comparison to CIPS, GraphRank and iScore is
reported in Table 4. PIZSA outperforms CIPS by identifying a
greater number of near-natives in four targets (T40, T41, T47 and
T53). PIZSA identifies more number of near-natives in four targets
in comparison to GraphRank (T29, T37, T40 and T50) whereas
GraphRank performs better than PIZSA on four other targets (T32,
T41, T46 and T53). iScore identifies a greater number of near-
natives in six targets (T32, T41, T46, T47, T50 and T53) as com-
pared to PIZSA which performs better on two targets (T29 and
T40). PIZSA identifies the most number of medium- or higher-
quality models (21, 15 medium and 6 high) followed by iScore (20,
13 medium and 7 high), CIPS (16, 14 medium and 2 high) and
GraphRank (14, 9 medium and 5 high). The performance of 37
groups/methods assessed on the CAPRI Score_set has been previous-
ly reported (Geng et al., 2020). PIZSA ranks in the sixth position in
comparison to the other groups/methods including CIPS
(Supplementary S20). The CAPRI Score_set used to evaluate the

Table 1. Comparison of PIZSA and CIPS on ZDock Protein-Protein

Docking Benchmark 4

PIZSA CIPS Total

Easy 38 33 78

Medium 7 6 16

Difficult 3 2 5

All 48 41 99

Table 2. Comparison of PIZSA, CIPS, GraphRank, iScore and scoring functions from respective docking methods on software-specific

Protein-Protein Docking Benchmark 5 decoys

Method PIZSA CIPS GraphRanka iScorea Self

SwarmDock (18) 10/1***/3** 9/1***/2** 7/1***/6** 10/2***/6** 9/1***/5**

pyDock (14) 3/2** 1/1** 5/3** 6/3** 6/1**

ZDock (10) 4/2** 5/2** 4/3** 6/5** 3/2**

HADDOCK (9) 3/2** 3/1** 3/2***/2** 3/2***/2** 3/2***/3**

Note: Summary of the number of targets with near-natives in 10 selected models. The total number of targets from each docking method is indicated in paren-

theses. Self indicates docking method’s respective scoring function. High- and medium-quality models are indicated by *** and **, respectively.
aPerformance of methods directly adapted from Geng et al. (2020).
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performance of GraphRank and iScore had been prefiltered to re-
move clashing models. PIZSA inherently penalizes atomic clashes as

a result of which the performance remains unchanged even without
filtering the dataset.

We also tested PIZSA’s ability to identify near-native complexes
as native crystallographic associations. PIZSA classified near-native
complexes as native associations with an accuracy of 0.62. On one

hand, 66% of high-quality models, 57% of medium-quality models
and 64% of acceptable-quality models were classified as native asso-

ciations. On the other hand, 38% of the non-near-native decoys
were classified as native associations.

3.4 Binding mode selection
We have already demonstrated PIZSA’s ability to identify the native
binding mode as one of the best scoring interactions in the

Dockground and CAPRI decoy sets. In this section, we illustrate
PIZSA’s ability to identify the correct binding mode with an ex-

ample of three homologous VHH domains (AMB7, AMD9 and

AMD10) interacting with PPA (Desmyter et al., 2002). The VHH
domains bind to orthogonal sites on the PPA despite sharing a high
structural similarity with Ca RMSD ranging from 0.61 to 0.84Å.
We built models for each of the VHH domains interacting with their
non-native epitopes on PPA (Davis et al., 2006) and scored them
with PIZSA along with their native complexes (Table 2). The native
binding modes were successfully identified as the highest scoring
interfaces amongst the models. It should be noted that none of the
six non-native binding modes is scored as viable binders. We also
scored all complexes with the CIPS potential. CIPS was able to iden-
tify only one out of three native complexes as the highest scoring
interactions (Supplementary S12).

3.5 Identification of crystallization artifacts
Distinguishing whether structures of protein assemblies solved by X-
ray crystallography are biologically meaningful or simply artifacts
of the crystallization process is an important problem in PPI studies.
Although crystallographic interfaces have smaller surface areas than
biologically relevant structures, this is not frequently the case and
significant overlap in interface areas has been observed. We trained
PIZSA to distinguish between crystallization artifacts and biological-
ly relevant interactions based on the fraction of interactions that
have an optimal atomic propensity (afraction) (Table 5).

The optimal afraction threshold for classification was identified
using ROC curves constructed from the ‘Duarte’ dataset (Duarte
et al., 2012). The area under the ROC curves was 0.79, 0.66 and
0.60 at 4, 6 and 8Å, respectively (Supplementary S13a). Optimal
afraction thresholds at 4, 6 and 8Å were 0.575, 0.510 and 0.489, re-
spectively. The TPR and FPR of classification were 69% and 18%
for 4Å, 64% and 32% for 6Å, 51% and 35% for 8Å. Interfaces in
the DCbio and DCxtal datasets with afraction scores greater than the
threshold were classified as true and false positives, respectively.
Interfaces in the DCbio and DCxtal datasets with afraction scores less
than or equal to the threshold were classified as false and true nega-
tives, respectively. PIZSA achieved the highest classification per-
formance at 4Å with an accuracy of 0.75, balanced accuracy of 0.75
and MCC of 0.51 (Supplementary S13b). We tested PIZSA’s ability
to identify crystallization artifacts on the ‘Bahadur’ dataset and
compared our performance with that of PISA. Of the 88 crystal
interfaces, PIZSA predicts 54 as crystallization artifacts whereas
PISA predicts 61. There are 10 common crystal interfaces that are
predicted as biological interactions by both the methods
(Supplementary S13c and d).

4 Discussion

We constructed statistical potentials to assess the stability of protein
quaternary assemblies based on amino acid preferences extracted
from a large dataset of experimentally deduced protein–protein
interfaces. Defining amino acid preferences for different categories
of atomic interactions (main chain–main chain, main chain–side
chain and side chain–side chain) and at different distance thresholds
helped dissect the specific modes through which residues interact
across protein interfaces. These residue pairing preferences were fur-
ther refined by incorporating the relative abundance of amino acid
residues in proteins. We observe that residue pairings across the
interface tend to occur with a preferred number of shared atomic
contacts and incorporate this as an atomic propensity parameter in
our scoring function. The inclusion of this parameter also enables us

Table 5. Z-scores of VHH–PPA complexes

AMB7 mode AMD9 mode AMD10 mode

AMB7 2.33 0.91 1.47

AMD9 1.17 2.43 �0.47

AMB10 1.04 1.33 2.82

Note: Scores for highest scoring complexes (also native complexes) are in

bold.

Table 3. Rank-ordering of the native complexes for targets in the

CAPRI Score_set

Target PDB ID Number of decoys PIZSA ranka CIPS rankb

T29 2VDU 2016 78.87 93.33

T30 2REX 1119 96.69 96.13

T32 3BX1 599 99.67 45.74

T35 2W5F 499 100.00 23.25

T36 2W5F 309 100.00 3.24

T37 2W83 1495 99.93 76.86

T38 3FM8 888 96.62 80.47

T39 3FM8 1386 98.27 82.14

T40 3E8L 2144 84.79 61.42

T41 2WPT 1180 80.76 28.83

T46 3Q87 1640 81.89 85.17

T47 3U43 1051 85.44 96.48

T50 3R2X 1448 81.35 89.94

T53 4JW2 1400 85.00 94.71

T54 4JW3 1398 82.98 48.79

a and
b - % decoys that score worse than the native.

Table 4. Comparison of PIZSA, CIPS, GraphRank and iScore on the

CAPRI Score_set

Target PIZSA CIPS GraphRanka iScorea CAPRI besta

T29 5/3** 5/2** 4 4 9/5**

T30 0 0 0 0 0

T32 0 0 4/1** 4/1** 2

T35 0 0 0 0 1

T37 4/1***/1** 4/1***/3** 2/1** 4/2** 6/1***

T39 0 0 0 0 0

T40 8/2***/5** 6/4** 4/3** 4/1*** 10/10***

T41 5 4/1** 8 10/2** 10/2***

T46 0 0 3 4 4

T47 8/3***/5** 7/1***/6** 8/5***/3** 10/6***/4** 10/10***

T50 2/1** 2/1** 0 4/3** 7/6**

T53 1 0 5/1** 5/1** 8/3**

T54 0 0 0 0 0

Total 7/3***/5** 6/2***/6** 8/1***/4** 9/2***/5** 10/4***/3**

Note: Summary of the number of acceptable-, medium- (**) or high-qual-

ity (***) model identified by different scoring methods on various CAPRI tar-

gets. CAPRI best indicates the best result for each target obtained by any of

the CAPRI participants.
aPerformance of methods directly adapted from Geng et al. (2020).
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to capture the specificity in atomic interactions between different
residue types across the protein–protein interface. We also include a
clash penalty to correct for steric clashes in protein structures that
can lead to spurious contacts and confound the signal from residue
preferences. Our scoring function is able to discriminate native
assemblies from docking decoys with an accuracy of 0.80, a bal-
anced accuracy of 0.87 and an MCC of 0.75 on the Dockground
Docking Decoy Set 1.

The construction of amino acid preference matrices also enables
us to identify crucial residues involved in protein binding. Residues
containing aromatic rings (TYR, TRP, PHE and HIS) are assigned
favorable scores for their interactions with most residues suggesting
their versatility in mediating residue pair interactions across the
interface. These amino acid residues are characterized by the pres-
ence of a p–electron cloud above and below the aromatic ring that
can interact with other aromatic and nonaromatic residues impart-
ing stability (Ma and Dougherty, 1997; Makwana and
Mahalakshmi, 2015). We find that interactions between hydropho-
bic residues were deemed less favorable at shorter distance thresh-
olds but as more favorable at larger distance thresholds, especially
for side chain–side chain interactions of large aliphatic amino acids
such as LEU and ILE, an observation that has previously been
reported (Bahar and Jernigan, 1997). Electrostatic interactions be-
tween oppositely charged residues also had favorable interaction
scores and have been found to play an important role in determining
specificity in protein interfaces (Sheinerman et al., 2000). These
interactions were also frequently found to have high atomic propen-
sities for a specific number of interacting atoms. These patterns are
supported by previous observations that the formation of salt
bridges between oppositely charged amino acids exhibit well-
defined geometric preferences (Donald et al., 2011). For interactions
between similarly charged residues, we find that interactions be-
tween positively charged residues are more favorable compared to
interactions between negatively charged residues which were pre-
dominantly unfavorable. Among the positively charged residues, we
confirm observations from previous studies that ARG–ARG pairs
are more favorable than LYS–LYS pairs (Glaser et al., 2001;
Nadalin and Carbone, 2018). Arginine along with tryptophan and
tyrosine exhibit strong favorable interactions with most other amino
acid types. This could be due to arginine’s capability to form mul-
tiple types of favorable interactions, similar to the aromatic residues.
In addition to the capability to form H-bonds and salt bridges via its
positively charged guanidinium motif, the electron delocalization of
its guanidinium p–system gives it a pseudo-aromatic character
(Crowley and Golovin, 2005). The presence of three methylene car-
bon atoms in its side chain also enables arginine to participate in
hydrophobic interactions. Small polar amino acids THR and SER
share common favorable interacting partners. THR interacts favor-
ably with ARG, ASN, ASP, GLN and HIS, whereas SER interacts fa-
vorably with a subset containing ASN, ASP and HIS. The higher
number of favorable interactions by THR could be attributed to the
presence of an extra methyl group that additionally interacts with
two or more methylene groups of ARG and GLN. THR’s favorable
interactions with MET, PHE, TYR and TRP further emphasize the
role of its methyl group in mediating such interactions.

The qualitative patterns of amino acid preferences across interfa-
ces extracted with PIZSA potentials differ slightly than those
described previously (Glaser et al., 2001; Keskin et al., 1998;
Nadalin and Carbone, 2018). However, these patterns are in close
agreement with amino acid preferences found in protein interaction
hot-spots (Bogan and Thorn, 1998) and hence better represent the
specificity in interactions between types of interactions across pro-
tein–protein complexes. It was observed that diagonal elements in
the scoring matrices had favorable interactions on an average 4%
more often than off-diagonal elements (Supplementary S14). This
can be speculated to have arisen from our training dataset consisting
81% homodimers that tend to have symmetric interactions (André
et al., 2008). The 12 favorable diagonal elements observed in the
side chain–side chain matrix constructed at 4Å distance threshold
can possibly be explained by various interactions, such as disulfide
bridges (CYS pairs), side chain hydrogen bonding (ASN/GLN pairs),

aromatic stacking (HIS/TYR/PHE/TRP pairs), hydrophobic exclu-
sion (ILE/VAL/MET/PRO pairs) and methylene group interaction
(ARG pairs).

Using the Dockground Docking Decoy Sets and the CAPRI
Score_set, we report a significant improvement for the effective
rank-ordering of native conformations over the recently published
CIPS potentials, which reported better performance compared to
three other propensity matrices and two atomic potentials (Nadalin
and Carbone, 2018). The inclusion of a clash penalty term in the
scoring function of PIZSA results in a better discriminatory perform-
ance (Supplementary S15). Furthermore, a distance threshold of 4Å
performs better than 6 and 8Å (Supplementary S16). Most residue–
residue interactions at the interface are mediated by side chains. The
matrices at a cutoff of 4Å give the best description of such specific
interactions. These specificities diminish at higher cutoff distances.
We also report better performance as compared to CIPS in identify-
ing near-native complexes among the top scoring decoys in most
cases. Our method further classifies the near-native complexes as na-
tive associations with an accuracy of 0.62. We have also tested the
efficacy of our method in detecting near-native structures from the
CAPRI Score_set. For this we have used the CAPRI categorization
of near-natives being of high, moderate and acceptable accuracy. In
comparison to 36 other methods, PIZSA is better than 31 of the
methods and identifies 2 lesser number of targets with acceptable-
or higher-quality models in comparison to the best performer.
However, the ranking of PIZSA would be better if an unfiltered
dataset were to be used. PIZSA is capable of considering decoys
with clashes and such structures do not have to be eliminated as it
was done in the case of the comparison mentioned above. Although
PIZSA ranks sixth in identifying targets with acceptable- or higher-
quality models, PIZSA is one of the top two methods to identify the
highest number of medium- or higher-quality models in comparison
to other methods. We also attempted to compare the PIZSA Z-score
and CIPS score with DockQ scores (Basu and Wallner, 2016), a
quality measure of docking models, but were unable to detect any
reliable correlation (Supplementary S21).

We have compared PIZSA to various other classes of scoring
functions that not only include statistical potentials but also scoring
functions employing physics-based energy terms, machine learning
algorithms and hybrid methods. Physics-based scoring functions
such as HADDOCK (Dominguez et al., 2003), pyDock (Cheng
et al., 2007), SwarmDock (Moal and Bates, 2010) and ZDock
(Pierce and Weng, 2007) use a linear combination of various energy
terms that often have functions to estimate the electrostatic energy,
van der Waals energy, bound surface area and desolvation energy.
GraphRank and iScore make use of a Support Vector Machine clas-
sifier to identify near-native models of PPIs. iScore makes use of a
hybrid methodology by combining its machine learning approach
with intermolecular energetic terms (Geng et al., 2020).
Conceptually PIZSA is akin to CIPS (Nadalin and Carbone, 2018),
more than any of the aforementioned methods, as both are statistical
potentials but the two methods differ in the formulation of their
scoring functions. PIZSA uses three different scoring matrices for
the three different modes of interactions whereas no such distinction
is made by CIPS. Both PIZSA and CIPS have analogous metrics to
weight the absolute frequencies of interface residue pairs. CIPS uses
a function based on the average number of contacts made by inter-
face residues whereas PIZSA uses atomic propensities that account
for probabilities of residue pairs interacting with a certain number
of atoms. PIZSA also differs from CIPS by incorporating a function
to penalize atomic clashes at the interface. Docking methods often
generate models with atomic clashes that can lead to spurious inter-
actions with unnaturally high number of native contacts (Geng
et al., 2020; Lensink and Wodak, 2010). Such models with clashes
are often removed from testing datasets as was the case with the
SBGrid dataset (Geng et al., 2020). The clash penalty is an import-
ant feature of our scoring function as it preempts the need to filter
out models with clashes. Both iScore and GraphRank do not work
on antibody complexes in their current form (Geng et al., 2020)
whereas PIZSA successfully identifies such complexes from the
ZDock Docking Benchmark 4.0. Fourteen of 25 antibody complex
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targets in the ZDock decoy set had at least a single near-native
model. PIZSA was able to identify near-natives in its top 10 predic-
tions for 7 such targets. Interestingly, PIZSA was also able to iden-
tify the near-native model for the one and only target that was
classified as being a difficult case (2HMI) from the set of 14.
Another unique feature of our method is its ability to discriminate
between biologically relevant interactions from crystallization arti-
facts. Our method was able to correctly identify 54 out of 88 crystal
artifacts, which is 7 less than the state-of-the-art method PISA.

The ability of PIZSA potentials to distinguish between favorable
and unfavorable binding modes is exemplified on a case study of
VHH domains in complex with PPA. The three VHH domains have
distinct binding modes for complexation with PPA and PIZSA
potentials were able to select the native binding modes for all three
VHH domains. In addition to effective rank-ordering of near-native
structures and the binary classification of protein assemblies, testing
on two distinct datasets, PIZSA potentials were also successful in
distinguishing between biologically meaningful complexes and crys-
tallization artifacts. We believe that crystal contacts represent cases
where we have 3D structures of noninteracting interfaces and identi-
fication of such cases is a crucial test for any protein complex assess-
ment method. We have two different metrics for identification of
biologically meaningful interactions from crystal contacts and near-
natives from docking decoys since these represent two different
problems. On one hand, we require our scoring metric to be coarse
grained to avoid near-natives with suboptimal packing from being
undetected. On the other hand, we require another scoring metric
that is fine tuned to be sensitive to packing at the interface for distin-
guishing biological interactions from crystal contacts. We have
therefore used two different scoring metrics with and without atom-
ic propensity (aij�k) as a weight that are used for the identification of
crystal contacts and near-natives, respectively. Our performance in
distinguishing biological interactions from crystal contacts is com-
parable to the state-of-the-art method PISA. We attempted to iden-
tify if there exists a pattern between incorrectly identified crystal
contacts and the bound surface area or the size of interacting part-
ners. We did not find an appreciable correlation between the bound
surface area or the size of interacting partners with afraction

(Pearson’s correlation coefficient of �0.13 and �0.14, respectively).
We demonstrate that knowledge-based potentials based on

known PPIs capture crucial information about protein binding and
can be successfully applied to identify biologically meaningful pro-
tein complexes in protein docking experiments, PPI predictions and
also in distinguishing complexes formed as artifacts of the protein
crystallization process. Such potentials could also aid in the design
of noncanonical protein complex.
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