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Abstract

Protein-Protein Interactions are critical to life, playing crucial roles in a variety of cellular processes. Hence,

prediction of protein-protein interactions would help in gaining insights into cellular processes so that we

may be able to manipulate and control it. In this study, we have developed knowledge-based pairwise sta-

tistical potentials based on experimentally derived structures for the prediction of protein-protein complexes.

Structures of protein dimers in the Protein Data Bank (PDB) were used for the construction of the statistical

potentials. A total of 96 different pairwise potentials were constructed for different values of five parameters:

distance threshold for interactions, interacting atom types, weight type, weighting scheme and reference

state. The performance of these potentials was benchmarked using Receiver Operating Characteristics

(ROC) curves and Rank-Ordering. The side chain-side chain pairwise potentials were the best performers

keeping all other parameters constant. The best performing pairwise potential could discriminate native

structures from a sequence-randomized background in a benchmark set of 296 structures with a false posi-

tive rate of 1.4% and a true positive rate of 98.6%. This result is an improvement over the MODTIE potential

which had a false positive rate of 28.5% and a true positive rate of 71.5%. The pairwise potentials are also

complementary to each other, in the sense that they are efficient on different subsets of the benchmark

set. Hence, a combination of the different potentials could result in better prediction accuracy. An attempt

towards the development of a 5-body potential based on the pairwise potential was also initiated. Two differ-

ent versions, an unweighted and a weighted potential were developed. The weighted multi-body potentials

performed better than the unweighted potential. These multi-body potentials will be further refined, which is

a work in progress. This prediction system will be bundled into a web server in the near future.
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Chapter 1

Introduction

"You see, proteins, as I probably needn't tell you, are immensely complicated groupings of

amino acids and certain other specialized compounds, arranged in intricate three-dimensional

patterns that are as unstable as sunbeams on a cloudy day. It is this instability that is life, since

it is forever changing it's position in an effort to maintain it's identity in the manner of a long rod

balanced on an acrobat's nose."

- Isaac Asimov, Pebble in the Sky

1.1 Protein Interfaces
Proteins are generally referred to as Biology's Workforce, as they perform nearly every function required

for life. Proteins are polypeptide chains, consisting of amino acids linked in a linear chain. Amino acids,

the building blocks of proteins consist of an amino group, a carboxyl group and an amino acid specific side

chain. The properties of different amino acids determine the kinds of interatomic interactions between them.

To carry out its function, a protein needs to be folded in a specific three dimensional shape. The 3D structure

of a protein is largely dependent on its amino acid sequence, as particular sequences of amino acids give

rise to linear chains and other compact domains with specific structures.

Most cellular processes require proteins to often work in concert, forming complexes of varying shapes

and sizes, transporting other proteins, modifying other proteins etc. Unsurprisingly, Protein - Protein Inter-

actions underlie a range of cellular processes such as mediating signal transduction, translating energy to

physical motion, regulating cellular metabolism, immunological response and enzymatic inhibition, hence

playing a critical role in many biological pathways (Braun and Gingras, 2012). Some parts of the protein

would need to interact with other proteins and hence would form the interface. Proteins inside a cell are

diffusing randomly and colliding with one another all the time, but only a small fractions of these collisions

result in biologically meaningful complexes and some chemistry (active - such as enzymatic activity, or pas-
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Introduction

Figure 1.1: The interface between subunits of an RNA binding protein (PDB: 3S6E chains A & B) is shown in surface representation.
The rest of the protein complex is in ribbon representation (Subunit A is coloured brown and Subunit B is coloured blue). This figure
was rendered using Chimera (Pettersen et al., 2004).

sive - such as protein transport).Identifying the general rules behind protein-protein interactions is hence

necessary for understanding the full repertoire of cellular pathways. The prediction of protein-protein in-

terfaces can lead to advances in understanding disease pathways which involve aberrant protein-protein

interactions such as cancer (Wong et al., 2003) and protein aggregate formations such as the Alzheimer's

disease, Huntington's disease, Parkinson's disease, Creutzfeldt-Jakob disease and other Prion disorders

(Kaytor and Warren, 1999) .

1.1.1 General Properties of Protein-Protein Interfaces

Protein-Protein interactions have been broadly categorized as homo- or hetero-oligomeric; obligate or non-

obligate and transient or permanent (Nooren and Thornton, 2003). If identical proteins come together to

form a complex, the resulting complex is termed as a homo-oligomer. Accordingly, assemblies of proteins

with different subunits are termed as hetero-oligomeric. If the individual subunits of a complex can exist

in solution independently, then the interaction between the subunits is a non-obligate one; in contrast, if

the structure and function of the subunits is lost upon separation, it is an obligate interaction. Based on

the lifetime of the interactions, protein associations are classified as transient (short-term interactions) or

permanent (long-term interactions). These six different types of protein complexes differ in their amino-acid

content and residue residue contact preferences (Ofran and Rost, 2003). Most protein complexes are a

combination of these categories. The shape of a protein-protein interface (Figure 1.1) has been observed to

be planar, globular and protruding, probably due to the symmetry involved in the associations (Argos, 1988,

Jones and Thornton, 1996).

Earlier studies concerning protein folding ascribed hydrophobic effect as the major driving force behind

protein folding (Dill, 1990). The folding of polypeptide chains buries the non-polar residues in the protein,

2
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minimising the number of thermodynamically unfavourable solute-solvent interactions. This burying of the

hydrophobic residues resulting in the reduction of free energy also occurs during the aggregation of protein

subunits and hence the hydrophobic effect is fundamental to the stabilisation of protein association as well

(Chothia and Janin, 1975). However, contradictions between the measured values for enthalpy and entropy

and the expected values for hydrophobic interactions have been noted for several protein association pro-

cesses suggesting that it is not possible to account for the stability of protein associations on the basis of

hydrophobic interactions alone (Ross and Subramanian, 1981). Analyses of multimeric protein structures in

contemporary times have lead to the inclusion of electrostatic interactions (both long range coulombic inter-

actions and short range hydrogen bonds and salt bridges) (Sheinerman et al., 2000, Xu et al., 1997), van der

Waals forces, and hydrophobicity as major driving forces governing the association of proteins. Other forces

such as aromatic stacking (Burley and Petsko, 1985), disulfide bonds, and cation-π interactions (Crowley

and Golovin, 2005) also contribute to varying degrees.

1.1.2 The Protein Binding Phenomenon

The subunits in a protein complex are synthesised as separate proteins which then come together and bind

in a particular orientation to give rise to the protein complex. The surfaces of the subunits in the monomeric

state are completely hydrated. The hydrophilic amino acids residues on the protein surface make stabilising

polar contacts and hydrogen bonds with the molecules of the solvent. Hence, for binding to take place

between the subunits of a protein complex, the intermolecular interactions between the subunits must be

more stabilising than the destabilisation caused by the desolvation of the subunit surfaces. The binding of

a protein can be described as a two-step reaction:

A + B −⇀↽− A : B −⇀↽− AB (1.1)

where A and B are the free proteins, A : B is the intermediate complex (also known as the encounter

complex) and AB is the bound protein complex (Selzer and Schreiber, 2001). The two subunits diffuse

randomly in solution, their motions dictated by the dynamics of Brownian motion, until they reach an area,

known as the steering region, the region where both the subunits are close enough to experience mutual

electrostatic attraction. These aforementioned long-range electrostatic interactions cause the subunits to

collide and form an encounter complex. At this stage, the short range electrostatic forces start acting at the

interface of two proteins and contribute to the stabilisation of the encounter complex. Partial desolvation of

the interface also contributes to a favourable entropy adding to the stability of the encounter complex (Ross

and Subramanian, 1981). The electrostatic attractions between the two subunits hold the subunits associ-

ated to each other for a longer time, allowing them to achieve a proper orientation for binding (Sheinerman

et al., 2000).

The interaction regions on proteins also contain binding motifs called anchor residues, that help stabilise

protein complexes by reducing the kinetic costs associated with structural rearrangements at the protein

3
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binding sites (Rajamani et al., 2004). Molecular Dynamics simulations suggest that the side chains of these

anchor residues frequently visit the conformations that are observed in the final bound state. They are also

part of the complementary binding pockets often found on protein interfaces. Along with providing molecular

recognition, these residues stabilise the encounter complexes that are in a near-native conformation. Further

rearrangements in the side chains of amino acid residues, desolvation of the interface and the formation of

non-covalent bonds lead to the final association in the stable complex. As a part of these events, certain

latch residues present on the protein interface lock the subunits into the final stable conformation (Rajamani

et al., 2004).

1.1.3 Experimental Determination of Protein Interfaces

Protein-protein interfaces can be experimentally determined using different methods. Some of the most

commonly used methods are:

• X-ray crystallography: The three-dimensional coordinates of the atoms of a protein are estimated by

analysing the diffracted angles and intensities of X-ray beams shone at a crystallised protein. Inher-

ently, this method is unsuitable for determining the structures of proteins that are difficult to crystallize.

This method also captures only a screenshot of the dynamic positions of the atoms of the protein.

Despite these limitations, X-ray crystallography methods are the most popular to determine protein

structure. Around 89 % of structures in the PDB are determined using X-ray Crystallography. How-

ever, only about 45 % of these structures depict protein-protein interactions.

• Nuclear Magnetic Resonance (NMR) spectroscopy: Determination ofmolecular structures using NMR

spectroscopy measures the chemical shifts in the nuclei of the atoms in the protein, which are depen-

dent on nearby atoms and their distances from each other, when the protein is placed in a strong

magnetic field. This generates a list of constraints which can then be used to build a model of the pro-

tein describing the location of each atom. Since NMR spectroscopy is done on proteins in solutions,

several models of the protein can be built, which can provide insight into the dynamics of the protein,

unlike X-ray crystallography. A major limitation for this method is that it can only be used to determine

the structure of smaller protein complexes. Currently, around 10 % of protein structures submitted in

the PDB were solved using NMR spectroscopy. However, the number of interactions elucidated by

NMR is much smaller.

• Electron Microscopy : Using a focused beam of accelerated electrons as the illumination source, elec-

tron microscopy is used to create images of large macromolecular structures. Proteins can be crys-

tallized and then imaged by electron microscopy in a method similar to the one used in X-ray crystal-

lographic methods of protein structure determination. Several images, providing different views may

be taken for some symmetrical protein molecules. These images are then analysed and combined to-

gether to produce a three-dimensional map of the proteins atoms. This method is useful for producing
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low resolution maps of complex shapes but often cannot resolve the positions of individual amino acid

residues.

• Chemical cross-linking followed by mass spectrometry: In this method, the protein complex is purified

and tagged, its subunits are cross-linked by subjecting them to cross-linking reactions and then identi-

fied using mass spectrometry. This method is useful for producing low resolution structures of transient

proteins. The cross-linking experiments are subject to several conditions and hence are error-prone

processes.

Another set of experimental methods to detect protein interface residues exist such as the yeast two-

hybrid method, which involves the construction of two plasmids and transforming them into a yeast strain.

One of the plasmids encodes protein X with the DNA-binding domain of a transcription factor, while the

other plasmid encodes the second protein Y in-frame with a transcription activation domain. Interactions

between proteins X and Y reconstitutes an active transcription factor which binds upstream of the reporter

genes and enables their expression (Causier and Davies, 2002). However, this method generates a lot of

false positives due to non-specific interactions and often needs confirmations from other methods to reduce

the false positive rates.

Mutagenesis experiments also aid in the detection of the protein interface residues. Amino acid residues

in the protein subunits are systematically mutated and their effect on protein binding is studied with the use of

protein expression assays. These experimental methods for the detection of protein-protein interfaces are

labor-extensive and expensive, in addition to their general limitations. Hence, there is a need to develop fast

and cost-effective computational methods that will enable us to generalize the principles of protein-protein

associations and study protein interactions in greater detail.

1.1.4 Computational Methods for Studying Protein-Protein Interactions

Observations by Christian Anfinsen (Anfinsen, 1973) regarding the spontaneous refolding of an unfolded

protein chain into its biologically active three-dimensional conformation led to the postulation of the Ther-

modynamic Hypothesis of Protein Folding. The Thermodynamic Hypothesis states that a native protein

folds into a three-dimensional system in equilibrium, in which the state of the whole protein-solvent system

corresponds to the global minimum of free energy (Xu et al., 2010). Based on this hypothesis, several

computational studies concerning protein folding, protein-protein interactions and protein design depend

on the derivation of a potential function to calculate the effective energy of a protein system. By matching

the results of quantum mechanical calculations to the empirically determined thermodynamic properties of

small molecules, parameters were derived for the development of potential functions (Sippl, 1993). These

potential functions are then applied tomacroscopic scales based on the assumption that properties of macro-

scopic states can be approximated by considering them as combinations of a large number of microscopic

states. The potential functions developed through this inductive approach are termed as 'physics-based' or

'physical' potential functions. These physics-based potentials are based on atomic level models and hence
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are computationally very intensive.

Another set of potential functions are derived by extracting the parameters from a database of known

structures (Sippl, 1993). These types of potentials follow the deductive approach and implicitly incorporate

a variety of interactions. Therefore, these potentials do not represent true binding energies and hence

are termed as 'knowledge-based' or 'pseudo-energy' potential functions. Though these methods do not

reflect the true energies, they are algorithmically less intensive and have performed successfully. These

potentials can be further divided into two cases. In one set, the knowledge-based potentials are derived

by comparing the relative frequencies of interacting pairs in the database with that in a reference state

(Miyazawa and Jernigan, 1996). In the other set, these potential functions are derived by optimisation with

respect to certain criteria, e.g, by maximising the energy gap between the native conformations and the

non-native conformations (Goldstein et al., 1992).

1.2 Knowledge-based Statistical Potentials
Knowledge-based statistical potentials are based on the Boltzmann assumption, that states frequently ob-

served structural features correspond to low-energy states. Tanaka and Scheraga were the first to employ

the above assumption to estimate pairwise amino acid interaction potentials by converting the observed

frequencies of amino acid pairs into effective free energies (Tanaka and Scheraga, 1976). Since then many

variants of pairwise amino acid potentials have extended this idea (Miyazawa and Jernigan, 1996, Sippl,

1993).

The general definition of a database-driven statistical potential as in (Sippl, 1990) is:

E(r) = −kT ln[f(r)] (1.2)

where,

r = a protein structural parameter (eg. interatomic distance)

E(r) = the energy at r

k = Boltzmann's constant

T = absolute temperature

Apart from r, the potential for a particular residue pair also depends upon the nature of atoms involved in

the interaction and s, the separation of the respective amino acids in the amino acid sequence. At s ≥ 10,

the atoms can be considered as free particles and then by the Boltzmann approximation :

Eobs(r) = −kT ln[fobs(r)] (1.3)

6
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where, fobs(r) is approximated by the relative frequencies observed in the database.

Since these general potentials incorporate all interaction types between the atoms (electrostatic inter-

actions, hydrogen bonds, van der Waals etc.) and also the influence of the surrounding medium on the

interactions, they contain redundant information. In order to isolate the specific information in different po-

tentials, we need to strip the redundant information from the general potentials. This redundant information

can be defined in terms of a reference state. A suitable reference for intramolecular protein interactions is

(Sippl, 1990):

Es(r) = −kT ln[fs(r)] (1.4)

where,

fs(r) =
∑

abfobs(r) (1.5)

which is averaged over all atom and residue types. Subtracting this redundant term from the general poten-

tials, we get:

∆Eobs(r) = Eobs(r)− Es(r) = −kT

[
fobs(r)

fs(r)

]
(1.6)

The term fobs(r) comes from the database, whereas the term fs(r) is calculated as defined in the reference

state. Hence, this potentials have a large dependence on the choice of reference state used.

1.3 Previous Related Work
Several researchers have attempted the prediction of protein-protein interactions using knowledge-based

potentials in the past, and some of these methods have also been able to garner experimental evidence for

their predictions.

Yasuda et. al., while working on the extracellular activation of tryptase ϵ used computational docking

approaches to understand how tryptase ϵ selectively recognizes the activation sequence in pro-uPA. A

lysine residue on loop A of tryptase ϵ (K20A) was predicted to be involved in recognizing the processing site

of pro-uPA. Consistent with this prediction, they were able to show that K20A tryptase ϵ mutants failed to

convert pro-uPA to uPA (Yasuda et al., 2005).

The PrePPI web server ( ), set up byHonig lab at Columbia

University, combines structural and non-structural cues in a bayesian framework to predict protein-protein

interactions. The algorithm used in PrePPI generates structural representatives for two query protein se-

quences. Complexes formed by the structural neighbours of the representatives are then retrieved from the

PDB to serve as interaction models. These interaction models are evaluated using five different scores,

some of which are statistically derived. The researchers also tested nineteen PrePPI predictions of human

interactions using Co-immunoprecipitation (Co-IP) experiments. Fifteen of these predictions were validated

using the Co-IP experiments (Zhang et al., 2012).

Another example where knowledge-based bioinformatic predictions were experimentally validated was

7
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the predictions of new substrates for Aurora A kinase. The predictions were made by analysing the available

data on Aurora A kinase and their phosphorylation sites and then using distinct types of biological information

to generate a ranked list of potentials Aurora A kinase substrates. These predictions were validated by using

in vitro kinase assays and mass spectrometry analyses (Sardon et al., 2010).

1.4 Classifier Methods
Diagnostic decision making is an important process involved in the prediction of protein-protein complexes.

In order to determine the threshold parameters for diagnosis, we need statistical methods to gauge which

of the thresholds gives the most accurate predictions. One such method is the use of Receiver - Operating

Characteristic (ROC) curves, which ensures that the number of true cases predicted does not come at the

cost of an unreasonable number of false positives (Swets et al., 2000).

A classifier is amapping that connects the instances to the predictions. Given a classifier and an instance,

there are four possible outcomes. If the instance is positive and it is predicted as positive, it is termed true

positive; if predicted negative, it is termed as false negative. If the instance is negative and it is predicted

as positive, it is counted as a false positive; if predicted negative, it is a true negative (Fawcett, 2004). The

two positive rate and the false positive rates of a classifier are defined below:

True positive rate ≈ Positives correctly classified

Total positives
(1.7)

False positiverate ≈ Negatives incorrectly classified

Total negatives
(1.8)

The True Positive Rate (TPR) is also referred to as Sensitivity and (1 - False Positive Rate) is also known

as Specificity.

ROC curves are two-dimensional graphs in which FPR is plotted on the X-axis and TPR is plotted along

the Y-axis. An ROC curve depicts the trade-off between the True Positives and the False Positives. Several

points on the ROC curve are important. The point (0,0) never issues any false positives but it also does not

return any true positives, whereas, the point (1,1) returns positives indiscriminately. The perfect classifier

is represented by the point (0,1). At this point, all positives returned are True positives and none are False

positives. Hence, the closer the ROC curve is to this point, the better the performance of the classifier. On

the other hand, a random classifier lies on the x = y line, as it is expected to return half the instances with

positive predictions and the other half with negative predictions (Fig 1.2). To compare between different

classifiers, the ROC curve performances are often reduced to a single scalar value. The Area Under the

ROC Curve (AUC) is one such metric which is used to compare classifiers. Since, the AUC is a portion of

the unit square, it's value always lies between 0 and 1. The random classifier is represented by a diagonal

passing through the points (0,0) and (1,1), which corresponds to an AUC of 0.5, hence any real world

classifier should not have an AUC value of less than 0.5.
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Figure 1.2: Sample ROC curves to illustrate the performance of different classifiers. The green line represents a good performing
classifier (AUC ≈ 0.9). The blue line represents a random classifier (AUC ≈ 0.5) whereas the red line corresponds to a bad classifier
(AUC ≈ 0.3)
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Chapter 2

Methods

2.1 Construction of the dataset
Three dimensional structures for protein dimers were retrieved fromProtein Data Bank (Berman et al., 2000).

The search for proteins with 2 chains (Asymmetrical Unit) returned 32871 structures. In order to remove

redundancy, the above dataset was culled using the PISCES web server (Wang and Dunbrack, 2005) with

the parameters given in Table 2.1. This resulted in a non-redundant dataset comprising of 6870 structures.

Further filtering based on Buried Surface Area (BSA) was done. Buried Surface Area is defined as:

BSA =
Nsubunits∑

n=1

ASA Sn
free −ASA Complex (2.1)

where, ASA Sn
free, is the solvent accessible surface area of the unbound subunits of the protein complex

and ASA Complex is the solvent accessible surface area for the bound complex. BSA for the dimers was

computed as per Eq. 2.1 using MODELLER (Sali and Blundell, 1993) and structures satisfying 400 Å2 ≤

BSA ≤ 2500 Å2 were taken to construct the final dataset. The lower bound on the BSA was put to remove

false positives from crystal contact artifacts whereas the upper limit excluded structures with intertwined

subunits. The final dataset comprising of 4060 protein dimers was divided into two sets: a training set

of 3764 dimers, which were used for constructing the potential and a testing set of 296 dimers, used for

benchmarking the statistical potentials. In order to make accurate predictions using statistical potentials,

the number of samples in the training set should be large while keeping a reasonable number of samples

in the testing set. Hence the division of the dimer set was made such that the testing set is ∼ 10 % of

the training set. The PDB codes of the structures comprising the training and the testing set are listed in

Appendix 1.
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Sequence Percentage Identity <= 40 %

Resolution 0.0 ∼ 3.0

R-Factor 0.3

Sequence Length 40 ∼ 10000

Non X-ray entries Excluded

CA-only entries Excluded

Cull PDB by Entry

Cull chains within entries No

Table 2.1: Parameters used for removing redundancy of the PDB dataset

2.2 Construction of Statistical Potentials
A series of Statistical Potentials were constructed using the protein dimers from the training dataset con-

structed above. Inter-atomic distances at different thresholds were computed for each structure using the

'cell list' implementation (borrowed from Neelesh Soni). Two amino acid residues were defined as inter-

acting if any relevant atom of residue A of type i was within the distance threshold of any relevant atom

of residue B of type j. Residue A and Residue B belong to different subunits of the protein complex. 96

different potentials were built using different values for five parameters : the contacting atom types (main

chain-main chain, main chain-side chain, side chain-side chain or all), the weighing scheme for assigning

weights to distinct residue interactions (cifa potential vs ipa potential), nature of the weights (derived at a

single distance (norm) vs averaged over multiple distance (cmpd)), weights in the reference state (avg vs

no_avg) and the distance threshold for contact participation (4, 6, or 8 Å). The combination of the different

values for these five parameters gave rise to 4× 2× 2× 2× 3 = 96 different potentials.

2.2.1 Two-Body Potentials

2.2.1.1 The cifa potential

Si,j = − log

⎡

⎢⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

∀ interfaces

f int
ij∑

∀ab
cifa int

ab

×
cifa int

ij

max(cifa int
ij )

fi
Nm

fj
Nn

× ⟨cifa int
ij ⟩

⎞

⎟⎟⎟⎟⎟⎟⎠
÷Ntotal

⎤

⎥⎥⎥⎥⎥⎥⎦
(2.2)
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where,

f int
ij = frequency of i− j residue pairs across the interface

cifaintij = min
[
interacting atoms i

total atoms i
,
interacting atoms j

total atoms j

]

cifa int
ab = frequency of any residue pair a− b weighted by their respective cifa

fi
Nm

= frequency of residues of type i in the subunit m

fj
Nn

= frequency of residues of type j in the subunit n

Nm, Nn = Number of subunits in subunits m and n respectively

⟨cifa int
ij ⟩ = average value of cifa observed in the dataset for i− j pairs across the interface

Ntotal = total number of protein complexes in the dataset

The observed probability for residue pairs of type i and j that belonged to different subunits and occurred

within a distance threshold in a protein complex was weighted by cifa, the minimum of the fraction of the

total atoms in each residue that were within the distance threshold. This weight was further normalised by

max (cifaij), the maximum cifa value for the i, j residue pair observed in the dataset. The probability of the

occurrence of an amino acid pair of the type i, j was computed based on the occurrences of the residues

i and j in their respective subunits. This probability weighted by the average value of cifa observed in the

dataset for the residue pair i, j forms the expected probability for a residue pair of the type i, j.

2.2.1.2 The ipa potential

Si,j = − log

⎡

⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎜⎜⎝

∑

∀ interfaces

f int
ij∑

∀ab
α ab

× αij

fi
Nm

fj
Nn

× ⟨αij⟩

⎞

⎟⎟⎟⎟⎟⎠
÷Ntotal

⎤

⎥⎥⎥⎥⎥⎦
(2.3)
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where,

αij =
ipa int

ij

max (ipa int
ij )

ipa = number of interacting pairs of atoms of residue types i and j

α int
ab = frequency of any residue pair a− b weighted by their respective α

fi
Nm

= frequency of residues of type i in the subunit m

fj
Nn

= frequency of residues of type j in the subunit n

Nm, Nn = Number of subunits in subunits m and n respectively

⟨α int
ij ⟩ = average value of α observed in the dataset for i− j pairs across the interface

Ntotal = total number of protein complexes in the dataset

In the second potential, the observed probability for residue pairs of type i and j that occurred within a

distance threshold in a protein was weighted by ipa, the total number of interacting pairs of atoms between

two residues. Similar to the first potential, this weight was further normalised by max (ipaij), the maximum

ipa value observed for the i, j residue pair in the dataset. The reference state for this potential was similar

to the reference state in the cifa one, with the average value of ipa observed in the dataset for the residue

pair i, j as the weight for the expected probability.

As Glycines lacks a side chain, they were handled in the following three ways in the side chain-side

chain potentials. In the first scenario, assuming that all atom potential values should be representative

of interactions concerning Glycine residues in the side chain-side chain case, the potential values for side

chain-side chain interactions involving Glycine were borrowed from the corresponding all atom potentials. In

the second scenario, following the assumption that side chain interactions are the major drivers for specificity

in protein-protein interactions, the Glycine interactions were given a positive, hence unfavourable value of

1.38. For the third scenario, the potential value for all Glycine interactions was set to 0, the assumption

underlying this scenario was that the occurrence of Glycine on protein-protein interfaces is random and

hence the log odds of the observed probability against the expected probability of Glycine pairs is 1. The

performance of the potential values for the three different scenarios were tested on the benchmark test by

considering the number of native structures that were ranked the best against the randomised scores.
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2.2.2 Multibody Potentials

Pairwise statistical potentials consider a protein-protein interface to be comprised of isolated residue pairs

and hence devoid of any structural context. In a bid to include the structural neighbourhood of an amino

acid residue while constructing the potential, 5-body statistical potentials were constructed, following the

formulation of the two-body potentials. The interface of each protein complex was decomposed into 5-body

amino acid cliques based on the interatomic distances between the residues. In graph theory, a clique is a

special graph in which every vertex is connected to every other vertex in the graph. Two different distance

thresholds, the intra-domain distance threshold and the inter-domain distance threshold, were used to define

the connections in the clique, (i) the intra-domain threshold of 5 Å and (ii) the inter-domain threshold of 8.5

Å. We define two amino acids to be connected if any atom of residue A lies within a distance threshold R0

of any atom of residue B (Fig 2.1). For these definitions, two cases were tested, Case (I) (the unweighted

case), where the potentials were computed according to the formulation given in Eq. 2.4 and Case (II)

(the weighted case), where the potentials in Eq. 2.4 were weighted using the average pairwise cifa values

(borrowed from the two-body potentials) for the residue pairs constituting the cliques.

Figure 2.1: Schematic representation of a 5-body clique. ResiduesA1, A2 andA3 belong to Subunit A of the protein complex whereas
ResiduesB1 andB2 belong to Subunit B of the protein complex. The contacts between residues from the same subunit are termed as
intra-domain contacts (shown by orange arrows) and the contacts between residues from different subunits are termed as inter-domain
contacts (depicted by the blue arrows).
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SA1A2A3B1B2 = − log

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∑

∀ interfaces

fA1A2A3B1B2∑
∀ α,β,γ,δ,ϵ

(fαβγδϵ)

fM
A1

20∑
x=1

fM
x

fM
A2

20∑
x=1

fM
x

fM
A3

20∑
x=1

fM
x

fN
B1

20∑
x=1

fN
y

fN
B2

20∑
x=1

fN
y

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

÷Ntotal

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(2.4)

where,

A1, A2, A3 are residues that belong to subunit M

B1, B2 are residues that belong to subunit N

fA1A2A3B1B2 = frequency of the clique A1A2A3B1B2 across the interface

fαβγδϵ = frequency of any 5− body clique αβγδϵ across the interface
fM
A1∑
fM
x

= frequency of the residues of type A1 in the subunit M ; similarly for
fM
A3∑
fM
x

and
fM
A3∑
fM
x

fM
B1∑
fN
x

= frequency of the residues of type B1 in the subunit N ; similarly for
fN
B2∑
fN
x

Ntotal = total number of protein complexes in the dataset

The observed probability for a clique A1A2A3B1B2 was obtained by dividing the number of occurrences

of the clique A1A2A3B1B2 by the number of all 5-body cliques observed in the protein. Considering, the

choice of each amino acid in a 5-body clique as an independent event, the expectation term was obtained

by multiplying the probabilities of picking amino acids Ai from their respective protein subunits.

2.3 Benchmarking of statistical potentials
The performance of the statistical potentials was tested on a benchmark set of 296 randomly selected

dimers that were excluded during the construction of the potentials. The potential scores for the native

structures were obtained by the addition of the potential scores for the individual residue pairs observed

across the interface in the native structure. To distinguish the score of a native structure from the score

of any non-interactant, these scores were compared against a randomised background set. There are

two ways by which such a randomised background set could be obtained for each native structure: (i)

physical models are built for the protein subunit by placing the two subunits of a protein complex in different

relative orientations. The scores of these physical models then serve as the randomised background. (ii)

keeping the structure of the protein complex unaltered, the sequence of the subunits is scrambled, which

gives us randomised pairwise interactions across the interface for different scramblings. A number of such

scramblings then constitute the randomised set.
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The above methods of obtaining the background set are equivalent, we have chosen the latter method

for the generation of the background set as it is less time consuming and algorithmically cleaner and easier

to implement. For each of the 296 dimers in the benchmark set, 1000 decoy (non-interactants constituting

the randomised background) confirmations were built by randomly scrambling the amino acid sequence of

the dimers, followed by the computations of statistical potential scores for each of the decoy structures. The

scrambling of the amino acid sequence was achieved by replacing each residue on the interface by another

residue randomly chosen from the corresponding subunit. To access the significance of the raw statisti-

cal potential score, a Z-score was calculated based on the mean and standard deviation of the statistical

potential scores for the decoy sets for each dimer (Eq. 2.5).

Z =
x − µ

σ
(2.5)

where,

x = raw score of the native structure

µ = mean of the raw scores of decoy structures

σ = standard deviation of raw scores of decoy structures

Receiver-operator Characteristics (ROC) curves are used to describe the observed false positive and true

positive rates at different Z-score thresholds. ROC graphs are two dimensional graphs with Sensitivity or

True Positive Rate (Eq. 2.10) plotted along the y-axis and (1 - Specificity) or the False Positive Rate (Eq.

2.11) plotted along the x-axis. For the construction of the ROC curves, the various definitions are given in

Eq. 2.6 - 2.9. The Z-score thresholds for the ROC curves ranged from the minimum observed Z-score to

the maximum observed Z-score for each potential along with an increment of 0.01. To compare the different

potentials, the ROC curves were integrated to calculate the area under the curve (AUC). The AUC represents

the probability that a classifier ranks a randomly chosen positive instance higher than a randomly chosen

negative instance, with 0.5 corresponding to a random prediction, and 1 to a perfect classifier (Fawcett,

2004). The optimal Z-score threshold for the best performing potential was taken as the Z-score where a

tangent of slope 1 intersects the ROC curve.
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True Positives (TP ) = No. of native structures with scores

lower than the threshold z − score (2.6)

False Positives (FP ) = No. of decoy structures with scores

lower than the threshold z − score (2.7)

True Negatives (TN) = No. of decoy structures with scores

higher than the threshold z − score (2.8)

False Negatives (FN) = No. of native structures with scores

higher than the threshold z − score (2.9)

True Positive Rate (TPR) =
[TP ]

[TP + FN ]
(2.10)

False Positive Rate (FPR) = 1 − [TN ]

[TN + FP ]
(2.11)
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Chapter 3

Results

3.1 Dataset Generation
For accurate benchmarking of the potentials, the benchmark set used to test the performance of the poten-

tials should be similar to the dataset the statistical potentials were trained on. Since the Buried Surface Area

(BSA) of the complex was used as a filtration parameter, the frequency distributions of BSA were compared

in the two sets to check for similarity (Figure 3.1). The BSA values for the 3764 structures in the training

set and the 296 structures in the benchmark are similarly distributed. The Mean and Median values for the

training set were 1279.5 and 1190.2 respectively, whereas the Mean and Median values for the benchmark

set were 1279.5 and 1203.67 respectively.

Among the six ways of classifying protein interactions mentioned in the Introductions section (Sec 1.1.1),

four categories (obligate, non-obligate, transient and permanent) pertain to the dynamics of protein com-

plexes and it is not possible for us to retrieve this information from the crystal structures of proteins (though

some of the studies may include information about the kind of interface, overall such studies are sparse).

Concerning the oligomeric state of the protein complexes, we find that 90 % (3389 out of 3764) of the struc-

tures in the training set are homodimers. Similarly, 88 % (264 out of 300) of the structures in the testing set

are homodimers.

3.2 Benchmarking of the Two-Body Potentials
The performance of the different statistical potentials was compared using two different methods.

1. Receiver-Operating Characteristic Curves for different Z-score thresholds

2. Rank - Ordering the scores of the native structures against scores from a randomized background set.
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(a) The BSA distribution for the training set

(b) The BSA distribution for the testing set

Figure 3.1: Histograms depicting the distribution of the Buried Surface Area (BSA) for protein complexes in both the training and the
testing set. The number of structures in the training and the testing sets are 3764 and 296 respectively. The binwidth used for plotting
the distribution was 25. The red and blue lines on the plot represent the mean and the median of the distributions respectively. The
black curve with grey shading is the kernel density estimation for the distribution.
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3.2.1 Benchmarking using ROC curves

The testing of the 96 different statistical potentials was done on a benchmark set of 296 dimers and their

performance was compared using ROC curves. The potentials showed a diverse range of performances

as can be seen in Figure 3.2. 11 of the 96 potentials had an Area Under the Curve of their ROC curves

greater than 0.90 (shown in the inset of Fig 3.2). All eleven of these potentials were variants of the side

chain-side chain potentials that were weighted by cifa. The main chain-main chain potentials were the

worst performers of all with some of the potentials performing worse than a random classifier.

The highest power of discrimination between the native and non-native interfaces was achieved by the

statistical potential built from side chain-side chain interactions across the interface at the threshold distance

of 4 Å (4.ss.norm.cifa.avg in Figure 3.2). The weighting parameter for this potential was cifa, calculated at

a single distance of 4 Å and the reference state was weighted by the average weight for residue pairs in the

dataset. The area under the curve (AUC) for the ROC curve for this potential was 0.9622. The true positive

rates and the false positive rates at the optimal Z-score of -0.7 were 97.8% and % respectively.

Figure 3.2: A comparison of the performances of the 96 different potentials as represented by their Receiver-Operator curves. Inset:
Zoomed in version for the best performing potentials.
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3.2.2 Benchmarking using Rank Ordering

After rank ordering the scores of the native and the decoy confirmations, the number of cases where the

native confirmation had the best score was also used to compare the performance of the different potentials.

On the basis of the interacting atoms, the performance of the potentials was in the order: side chain-side

chain > all atoms > main chain-side chain > main chain-main chain (Fig 3.3). The performance of the

potentials based on the nature of the weights (i.e. whether they were computed at a single distance (norm) or

computed as an average from three different distances (avg)) was comparable across the different potentials.

Only in the case of the potentials constructed at the distance threshold of 4 Å side chain-side chain potential,

is the norm potential better than cmpd potential.

Figure 3.3: A comparison of the performances of the different potentials as measured by the number of native structures that were
ranked 1 against a set of decoy structures. The different facets in the figure describe the performances of the potentials according to
the interacting atoms type (all - all atom, mm - main chain-main chain, ms - main chain-side chain and ss - side chain-side chain). The
colors differentiate between the potentials based on the nature of the weights, red for cmpd (weight computed as an average at three
distances) and cyan for norm (weight computed at a single distance)

The performances of the potentials followed a similar pattern when dissected according to the distance

threshold (Fig 3.4). The cifa potential performed better than the ipa potential in all cases. Here again,

the side chain-side chain potential at 4 Å with cifa as the weighting parameter computed at a single dis-

tance (4.ss.norm.cifa.avg) was the best performer. 137 out of 296 native structures were best ranked when

compared against their randomised backgrounds and 240 structures out of 296 have their native structures

21



Results

ranked under 25.

Figure 3.4: A comparison of the performances of the different potentials as measured by the number of native structures that were
ranked 1 against a set of decoy structures. The graph is dissected based on threshold interaction distance and the different potential
type; cyan represents the ipa potential whereas red stands for the cifa potential.

The potentials with an Area Under the ROC Curve (AUC) greater than 0.90 were checked for comple-

mentarity in terms of protein complex prediction (whether different protein complexes were ranked best by

different potentials). The results are summarised in Table 3.1. The union of the best ranked sets (set of struc-

tures whose native structures were ranked 1 against a randomised background) for the different potentials

was greater than the best ranked set for the best performing statistical potential (4.ss.norm.cifa.avg).

cut_off rank best performing potential (4.ss.norm.cifa.avg) Union of AUC ≥ 0.9

≤ 0 137 169

≤ 5 190 217

≤ 10 216 235

≤ 15 224 247

≤ 20 233 252

≤ 25 239 261

Table 3.1: Complementarity between the different potentials at different rank cut-offs. The number of structures that were ranked 1
against their respective backgrounds for the two cases are given in the two columns.
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There is a preference for same-interaction pairs and complementarity between opposite charges (eg

Lysine pairing up favourably with Glutamate and Aspartate) is also observed in the log-odds ratio matrix

(Fig 3.5). Cysteine-Cysteine and Histidine-Histidine are among the best scored residue residue contact

pairs. The contact preference scores for the hydrophobic amino acids are overall favourable though any

specific preferences are not observed.

Figure 3.5: Log odds ratio of residue pair preferences across protein - protein interfaces for the best two-body potential. The darker
the shade, the higher the preference

3.2.3 Testing Potential Values for GLY-GLY pairs

Since, Glycine lacks a side chain, the potential values for GLY-GLY pairs for the side chain-side chain

potentials were tested as described in Methods. For the side-chain potentials at 4 and 8 Å , assuming

that the occurrence of Glycines on the interface is random (column no-effect in Table 3.2), gave the best

performance. For the potential at 6 Å, however, the assumption that GLY residues are unfavourable worked

the best.

potentials all atom potentials unfavourable score (1.38) no-effect (0.00)

4.ss.norm.cifa.avg 109 132 136

6.ss.norm.cifa.avg 100 131 113

8.ss.norm.cifa.avg 91 99 110

Table 3.2: Testing of side chain-side chain potential values for GLY-GLY pairs: Native confirmation scores were rank ordered against
decoy conformation scores and the number of structures with native confirmations as best ranked was noted
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3.2.4 Performance on the testing set

With a Z-score threshold of -0.7 for the best pairwise potential (4.ss.norm.cifa.avg), 284 out of the 295 native

structures testing set had a z-score below the threshold, which corresponds to a true prediction. Among

the 11 structures which had a z-score greater than the threshold, 7 structures were incorrectly submitted as

dimers in the PDB. The biological assemblies for these structures (PDB codes: 3PNA, 1IFQ, 3MTX, 1PL3,

3QL9, 4CMP, 2XRW) is a monomeric entity, as given in the Protein Data Bank. These false classifications

in the PDB may be a result of crystallization artefacts. Since, our potentials could successfully distinguish

crystal artefacts from true interactions, these 7 structures were considered as correct predictions. Hence,

our potentials could correctly identify 291 out of 295 structures, which translates to a prediction accuracy of

98.6 %.

3.2.5 Comparison with MODTIE

The performance of the best performer was compared with MODTIE (Davis et al., 2006) (Fig 3.6). Bench-

marking for both the potentials was done on the same benchmark set. The Area under the curve for the

MODTIE potential was 0.9445. The true positive rate and the false positive rate at the Z-score threshold of

-1.7 was 71.5 % (211/295) and 28.5 % (84/295) respectively.

Figure 3.6: Performance of the two body potential in comparison to MODTIE. The red part and the cyan part of the plot depict the no.
of True Positives and the no. of False Negatives respectively.

3.2.6 Multibody Potentials

The performance of the multi body potentials was accessed in a manner similar to the two-body potentials.

For case (i), with the intra-domain distance threshold as 5 Å and the intra-domain distance threshold as

8.5 Å, a total of 280114 distinct cliques were observed, out of 323400 distinct possibilities. The Receiver

Operating Curve is shown in Fig 3.7. The Area Under the Curve for the ROC of the potential without any

weights was 0.3089, whereas the Area Under the Curve for the potential with the weights was 0.41006.

Both the potentials performed worse than a random classifier.
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Figure 3.7: Performance of the multibody potentials as assessed by the ROC curves. The cyan curve represents the ROC for the
unweighted 5-body potential whereas the red curve depicts the ROC for the weighted 5-body potential.

3.3 Validation
The potential 4.ss.norm.cifa.avg was tested for its prediction power on the Ral-GEF system. Six variants

of GEF were tested for binding with Ral. Experimental evidence shows that four of these variants (RGL1,

RGL2, RGL3 and RALGDS) bind Ral in a particular mode, while the other two variants weakly interact with

Ral, binding in a different mode. The Z-scores for all the GEFs were below the threshold and hence all six

variants are predicted to bind.

Based on the statistical potential scores, we predicted the following hotspot residues, SER:173:A, GLU:34:A,

LYS:370:B, ARG:322:B, ARG:42:A and ARG:74:A, in RGL1-Ral complex that upon mutation would weaken

the interaction between RGL1 and Ral. These hotspot residues lie in complementary clusters (Fig 3.9) and

hence mutating them to other residues would lead to unfavourable interactions, thereby weakening the in-

teraction between RGL1 and Ral.
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GEFs Z-scores

RALGDS -3.59

RALGPS1 -3.39

RALGPS2 -3.72

RGL1 -3.21

RGL2 -3.11

RGL3 -2.72

Table 3.3: The predictions regarding the binding of Ral to GEF variants using the pairwise statistical potentials.

Figure 3.8: The RalGDS-Ral complex. The Ral subunit is shown in blue in surface representation whereas the RalGDS is depicted in
brown, also in surface representation. Image rendered using Chimera (Pettersen et al., 2004)

(a) Interaction cluster of SER173 of Ral (b) Interaction cluster of LYS370 of RGL1

Figure 3.9: Hotspot residues in the RGL1-Ral Complex. Subunit A is Ral and Subunit B is RGL1. Image rendered using Chimera
(Pettersen et al., 2004)
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Chapter 4

Discussions

4.1 Statistical Potentials
Due to the labor-intensive and expensive nature of the experimental methods for validation of protein-protein

associations, computational methods for the prediction of protein-protein interactions have become quite

popular. Between the two different types of computational methods for the prediction of protein associations,

namely the physics-based methods and the knowledge-based statistical methods, we have used the latter to

develop a way to determine protein binding. We chose statistical potentials because they are algorithmically

and computationally much more feasible than the physics-based model. Another limitation of the physics-

based models is their heavy dependence on the accuracy of the structure of the protein. A small discrepancy

in the atomic coordinates will lead to a significant deviation in the estimation of the energies, when computed

using the physics-based models. Statistical potentials are robust enough that such minor discrepancies do

not affect the estimates of potentials by a significant amount.

Statistical potentials help us portray a picture of how interactions between proteins are mediated and

can be used as stand-ins for binding free energies. They work on the principle that the most frequently

observed amino acid residue pairs are energetically more preferred than the pairs less frequently observed.

However, because statistical potentials do not discriminate between interaction types and their strengths

(for eg, the strength of a hydrogen bond vs that of a van der Waal's interaction), the statistical potential

scores do not correlate perfectly with the binding affinities. To build a statistical potential for predicting

binding affinities, known structures will have to be subsetted according to their binding affinities and then

statistical potentials built for each subset of the dataset. However, the dearth of data on experimental binding

affinities prevents the construction of a meaningful statistical potential. Based on observations made on an

experimental dataset, statistical potentials allow us to derive approximate functions which can be used to

predict the energy of an unknown system.
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4.2 Pairwise Potentials
We tested 96 different pairwise statistical potentials for their ability to predict protein-protein interactions. In

both the methods for benchmarking the performance of the potentials, the side chain-side chain potentials

were significantly much better than the other potentials. The performance of the other potentials based

on the type of interacting atoms follows the order: all atom > main chain-side chain > main chain-main

chain. Since, protein associations require specific interactions between the atoms of the constituting amino

acid residues, these specificities are provided by the properties of the different side chains. Consistent

with this, the side chain-side chain potential has the best power for discriminating between native and non-

native associations, whereas main chain-main chain (which lack any specificity) potentials are the worst

performers.

We constructed two statistical potentials using two different weighting schemes cifa and ipa. Between

the two different potential types cifa and ipa, we observed that the cifa performed better than the ipa

potential when all other parameters are kept constant. The difference between the two different weights

is that while cifa aims to capture the contribution of each residue to the interaction between two residues

and then considers the contribution of just one residue towards the weighting, the ipa potential weighs the

different residue pairs based on the number of interatomic interaction pairs between two different residues.

Since Glycines lack a side chain and are present abundantly on the interface, we need to incorporate

them in the side chain-side chain potentials. Three different scenarios were tested in this regard. The

potential values for the GLY interactions in the side chain-side chain potentials were derived using a semi-

optimisation approach. Of the three different scenarios tried, the case which assumes the distribution of

Glycines on the interface is random (the ratio of the observed frequency of GLY pairs and the expected

frequency of the GLY pairs is 1) gave the best results. Since Glycine lacks a side chain, in our potential, we

have considered that it does not discriminate between amino acid residues and interacts with any residue

the same way.

Cysteine-Cysteine pairs have the best scores for any residue pair. This observation previously reported

by Glaser (Glaser et al., 2001), is expected since the sulphurs in Cysteine have been observed to form

disulphide bonds which may play an important role in the stability of protein complexes. Cysteine-Cysteine

pairs along with Histidine-Histidine pairs are also found in metal coordination sites across the interface (eg.

zinc finger domain). These may be the reasons why Cysteine-Cysteine and Histidine-Histidine residue pairs

have high scores. Other residue pairs with favourable contact scores are the oppositely charged residues

(for eg. Lysine and Arginine (with positively charged side chains) with Glutamate and Aspartate (with nega-

tively charged side chains)). These residue pairs form salt bridges across the interface and help strengthen

the interaction. Also, since the burial of charged amino acid residues is energetically unfavourable they are

often observed to be paired with oppositely charged amino acids.

The non-specific van derWaal's force is the major interaction force between the hydrophobic amino acids
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(Leucine, Isoleucine, Alanine, Valine, Proline, Methionine, Phenylalanine and Tryptophan). Given the non-

specific nature of this interaction, the hydrophobic residues clump together showing no particular residue

pair preferences. As seen in the contact potential matrix, any hydrophobic - hydrophobic residue pair gets a

favourable score without showing any particular preferences, except in the case of Tryptophan-Tryptophan

pairs which get a higher score than the other hydrophobic pairs.

In the log odds ratio matrix for the pairwise potential, the self-interaction scores between residues are

high scoring. This means that like charged residue pairs (eg. Arginine-Arginine pairs) which are expected

to get unfavourable scores are assigned favourable scores. A significant proportion of the dimer structures

solved are homodimers and our dataset is also comprised of mostly homodimers. Because of the symmetric

nature of the homodimers, it is likely that similar residues come closer more often and hence, they have high

favourable scores in our score matrices. However, such like charge interactions have been the focus of other

studies (Magalhaes et al., 1994, Pednekar et al., 2009) which find that such like charged pairs do occur in

protein-protein interactions if the interaction between them is mediated through a water molecule (Heyda

et al., 2010). Magalhaes et. al. (Magalhaes et al., 1994) provides examples several where Arginine-Arginine

pairs are found in close proximity. Since water molecules cannot be reliably captured in low resolution X-ray

crystal structures and also since information about the presence of water in the protein structures in our

training set is missing, we cannot explore this possibility. An alternative hypothesis behind this observation

might be that at the 4 Å level, there might be significant main chain-main chain interactions which might

contribute to the favourable scores for the diagonal elements. Further investigation is needed to pin down

the reason behind this observation.

4.2.1 Testing the performance of pairwise potentials

Benchmarking by rank ordering is one of the most robust ways to test the performance of a potential as it

imposes the stringent constraint that the native conformation must have the lowest score when compared

with 1000 non-native confirmation scores. The results from this benchmark echo the ones observed using

the ROC analysis. When this test was applied to compare the performance of a union of best performing

potentials versus the performance of any one of these potentials, it was observed that the union of potentials

performed better than the best performing potential. This seems to suggest that different potentials are more

efficient at discriminating certain types of protein complexes than the other potentials. As an example, a

protein from Enterococcus faecalis (PDB Code: 3NAT) was ranked 462 out of 1000 when a side chain-side

chain potential was used. However, when a main chain-main chain potential was used on the same protein,

it was ranked 1. This suggests that, in this protein, main chain-main chain interactions are more important

at the interface than side chain-side chain interactions and hence, a main chain-main chain potential gave

us better predictions.

Since, pairwise potentials interpret protein-protein interfaces in terms of isolated residue pair interactions,

these potentials ignore the structural context of an amino acid residue in a protein. Often, the surrounding
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amino acid residues of a particular residue may be important for bringing that residue in a particular con-

firmation to facilitate the interaction with the other subunit. This absence of contextual awareness might

explain why these pairwise potentials do not predict protein complex formation perfectly.

4.3 Multibody Potentials
Statistical Potentials built using extended stretches of amino acid residues would solve the problem men-

tioned in the previous section. By taking into account the structural neighbourhood of an amino acid residue

during the construction of the potential, we look for clusters of residues. Following the same assumption as

in the pairwise potential, that the most frequently observed clusters of amino acid residues correspond to

the energetically favourable states, attempts were made at constructing 5-body statistical potentials.

The structural definition of a multi-body clique across a protein interface is more complicated than the

simplistic definition used for defining interactions in the pairwise potential case. Two different distance

thresholds are now required for the definition, an intra-domain interaction distance and an inter-domain in-

teraction distance. The most optimal values for these parameters are not easy to determine, a smaller,

stringent distance threshold will take into account the strongest interactions but we may not sample enough

distinct cliques, which would affect the performance of the potential. However, setting a liberal distance

threshold, we may be able to get a larger number of multi-body cliques but only at the expense of picking

up some false interactions. The problem of weighing the different interactions suffers in a similar way (the

definition used in the pairwise case - any atom of residue A lies within any atom of residue B; gives rise to

a lot of false interactions when looking at cliques). Our results demonstrate that an appropriate weighting

scheme can improve the prediction results significantly (Fig 3.7) . All these problems need substantial sam-

pling to gauge the best definitions for a multi-body cliques. These refinements are being incorporated in the

next iterations of multi-body potentials.

4.4 Validation on the RalGEF-Ral system
The RalGEF-Ral system is an important signalling pathway involved in oncogenesis. The ability of Ral to

bind to six different variants of RalGEFs (RalGDS, RalGPS1, RalGPS2, RGL1, RGL2, RGL3) was tested

using our pairwise statistical potentials. All six variants of RalGEFs were predicted to bind to Ral. Four of

these variants (RGL1, RGL2, RGL3, RalGDS) are found to bind Ral experimentally, whereas the other two

variants might be weakly interacting. Since the statistical potentials make predictions on binding events of

two proteins, we suspect that if all the different GEFs are put in a in vitro setting, they will bind to Ral.

However, in a cellular context, the bindings may not be strong, with proteins out-competing each other.

Also, as statistical potentials are based on average properties of residue-residue interactions, they do not

correlate well with binding affinities and hence fail to determine the RalGEF variants which bind Ral more

strongly than the other variants.

We predicted some hotspot residues which upon mutations to other residues will weaken the interactions
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between RGL1-Ral complex. These hotspots residues sit in complementary clusters and hence themutation

of these residues to residues which disrupt the interaction (oppositely charged residues in case of polar

residues) will lead to unfavourable interactions that would destabilise the complex. This observation shows

that along with complex level prediction of protein-protein binding, our statistical potential can also help

predict important interactions at the residue level.

4.5 Applications
Apart from predicting whether two protein subunits would form a stable association or not, these potentials

can be applied to a variety of problems such as the prediction of binding hot spot residues, protein design

etc.

Experimental alanine scanning is one of the best methods to determine the contribution of individual

residues to the stabilisation of a protein-protein interface. However, this method is very labor-intensive as

it involves systematically mutating all the residues in a protein to alanine and measuring the effect of the

mutation on the binding of the complex. Statistical potentials such as the one presented in this thesis can be

used as an alternative method to predict hot spot residues across protein interfaces. In silico mutagenesis

experiments are conducted on the protein of interest and then physical models of the protein are built. The

resulting models are then scored using the statistical potential and the scores compared with the native

model. Binding Hot Spot residues are then defined as those residues that lead to a large destabilisation in

the final score of the protein.

These potentials can also aid in protein design processes. Given a protein structure, a favourable,

complementary surface can be designed and optimised using these potentials which would ensure binding.

Starting with a generic protein surface, residues on this surface can be tweaked to ensure complementarity

with the target protein of interest. This method can also be employed to design novel antibodies.

The pairwise statistical potentials prediction system will be bundled in a web server in the near future,

so that researchers can submit their protein complexes and make use of this facility. An ultimate test for

the multibody potentials would be to test it on the solutions submitted by computational biologists for the

target structures in CAPRI (Critical Assessment of PRediction of Interactions) (Janin, 2002). CAPRI is a

community-wide, blind test experiment which tests the ability of protein-protein docking algorithms to predict

modes of association between two proteins based on their three-dimensional structures.
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Appendix A

Supplementary Data

A.1 Training Set PDB codes

1A25 1A2O 1A6J 1AAZ 1AC6 1ADU 1AMU 1AOE 1AOH 1AOR 1AQU 1AT3 1ATZ 1AU1

1AYO 1AZT 1AZW 1B3U 1B43 1B88 1BC5 1BCM 1BEH 1BF6 1BIN 1BJA 1BMT 1BQU

1BXT 1BYF 1C3R 1C94 1C9O 1CI4 1CI9 1CJA 1CKU 1COL 1COZ 1CP2 1CQ3 1CRU

1CZP 1D0Q 1D2O 1DBW 1DDV 1DEB 1DEK 1DJ7 1DJT 1DLE 1DM9 1DNP 1DOW 1DQE

1DVK 1DWU 1DYN 1DYO 1DYS 1DZK 1E0B 1E30 1E5R 1E6C 1E8C 1E9G 1EAJ 1ECE

1EDM 1EEJ 1EEO 1EGA 1EI7 1EJD 1EJF 1EK6 1EKE 1EM9 1EPA 1EQ9 1EUJ 1EUV

1EXT 1EYV 1EZG 1F08 1F0K 1F0L 1F1C 1F35 1F39 1F46 1F6B 1F7D 1F86 1F9M

1FIW 1FJ2 1FJR 1FM0 1FMT 1FN8 1FN9 1FNN 1FOC 1FP3 1FQT 1FS5 1FSG 1FUU

1G61 1G71 1G8Q 1GEQ 1GG4 1GGG 1GHE 1GIQ 1GL4 1GNW 1GNX 1GOI 1GPE 1GQA

1GTD 1GU2 1GU7 1GUD 1GVE 1GVF 1GVK 1GVU 1GXM 1GYG 1GYO 1H03 1H1O 1H2B

1H32 1H3F 1H3L 1H4P 1H4R 1H4X 1H6G 1H7S 1H80 1H8G 1H8P 1H97 1H9O 1HEK

1HKQ 1HLC 1HPL 1HRU 1HSL 1HST 1HY5 1I19 1I31 1I3Z 1I4J 1I4N 1I4U 1I7K

1IHN 1II2 1IJY 1IN0 1IO7 1IOO 1IPS 1IQ4 1IRD 1IRX 1ISI 1IT2 1ITH 1ITV

1IWM 1IX9 1IXC 1IYB 1IZ5 1J0W 1J1N 1J2X 1J3M 1J6R 1J71 1J7J 1J83 1JAT

1JEK 1JET 1JFL 1JH6 1JHF 1JI1 1JIH 1JL0 1JL9 1JMK 1JMT 1JO0 1JR2 1JS8

1JVN 1JYA 1K07 1K0E 1K38 1K3S 1K4Z 1K66 1K68 1K6D 1K8Q 1KAG 1KAP 1KCF

1KHV 1KJN 1KMT 1KNQ 1KOL 1KPT 1KRH 1KU1 1KUG 1KUT 1KWA 1KXI 1KXJ 1KYF

1L1E 1L1J 1L4I 1L5J 1L6R 1L7A 1L7M 1L8R 1L9M 1LB6 1LEH 1LF6 1LK0 1LKK

1LM4 1LM5 1LM7 1LNZ 1LQT 1LWJ 1LXD 1LYQ 1M0Z 1M1F 1M1Z 1M2D 1M45 1M48

1M55 1M6U 1M8A 1MBY 1MI1 1MIW 1MJH 1MK4 1MKI 1MKZ 1MOL 1MPG 1MQS 1MQV

1MY7 1MZG 1N08 1N0S 1N1B 1N2Z 1N45 1N46 1N7H 1N8V 1NBQ 1NCN 1ND4 1NNW

1NO7 1NOW 1NPE 1NQ7 1NQJ 1NS5 1NSZ 1NTV 1NU0 1NU4 1NUB 1NUL 1NUU 1NXM

1O0W 1O12 1O5U 1O63 1O7I 1O81 1O8B 1OAI 1OBB 1OBO 1OBX 1OCU 1ODZ 1OF3

1OFZ 1OH0 1OHU 1OIZ 1OJ5 1OMZ 1ON2 1OOH 1OQJ 1OW4 1P0K 1P1X 1P4U 1P5T

1P7W 1P9L 1P9Y 1PAM 1PBW 1PD3 1PE9 1PFB 1PGU 1PKH 1PP3 1PP4 1PQ4 1PQH

1PS1 1PT6 1PUI 1PX5 1PXY 1PZL 1PZX 1Q1A 1Q3O 1Q67 1Q77 1Q7F 1Q8Y 1QAH

1QDL 1QEX 1QF8 1QFT 1QGR 1QH5 1QJC 1QJJ 1QJS 1QKR 1QKS 1QLS 1QO2 1QOZ

1QSD 1QUP 1QW9 1QWT 1QYA 1QYR 1R12 1R1D 1R77 1R7A 1R7L 1R9D 1RD5 1REG

1RG8 1RHF 1RHY 1RIF 1RKI 1RKQ 1RP0 1RRL 1RRM 1RW0 1RYL 1RZU 1RZX 1S0P

1S4K 1S4N 1S5P 1S98 1S9R 1SEI 1SFD 1SFL 1SH0 1SH8 1SJ1 1SMO 1SMX 1SQJ

1SQU 1SUL 1SW6 1SWV 1SZ0 1SZH 1SZW 1T0I 1T0P 1T1V 1T2L 1T3G 1T4O 1T6F

1T6T 1T7R 1T92 1TBX 1TDQ 1TE2 1TE5 1TH8 1THT 1TIQ 1TL9 1TLT 1TOA 1TR8

1TVF 1TVN 1TW4 1U00 1U07 1U19 1U5K 1U5U 1U7B 1UAX 1UC7 1UCG 1UCR 1UEB

vi
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1UG3 1UJ2 1UJN 1UJW 1UKC 1UMU 1UMZ 1UOC 1UPK 1UPS 1UQT 1URH 1URJ 1URS

1UTI 1UV7 1UWW 1UWZ 1UXZ 1UZ3 1V1A 1V1P 1V37 1V47 1V74 1V8H 1V96 1V9K

1VA6 1VBK 1VC1 1VC4 1VCD 1VDR 1VDW 1VH5 1VHX 1VI2 1VIA 1VIO 1VJ7 1VJL

1VJQ 1VJU 1VKI 1VL4 1VM7 1VMA 1VMO 1VP2 1VPV 1VQQ 1VQU 1VS3 1VYB 1VZY

1W32 1W5R 1W94 1W9C 1W9P 1W9S 1WB4 1WB7 1WC3 1WDU 1WDV 1WEH 1WKO 1WKR

1WLG 1WMH 1WMS 1WMX 1WN1 1WOQ 1WPN 1WQ6 1WR8 1WRA 1WSC 1WSR 1WUF 1WV2

1WVG 1WWL 1WWM 1WWP 1WZ9 1WZD 1X2I 1X6I 1X7O 1X9Z 1XAH 1XCR 1XFS 1XG2

1XGS 1XHK 1XI3 1XIY 1XJU 1XK9 1XM7 1XM8 1XOC 1XOF 1XQA 1XQR 1XRP 1XRS

1XSZ 1XTN 1XVI 1XVS 1XVW 1XYZ 1XZO 1Y0U 1Y1M 1Y1P 1Y3T 1Y44 1Y4T 1Y5H

1Y71 1Y7Y 1Y9Z 1YAC 1YBX 1YC0 1YC5 1YCD 1YDY 1YF2 1YGA 1YLM 1YLQ 1YLX

1YMT 1YNP 1YOC 1YOD 1YOZ 1YPF 1YPQ 1YPY 1YQ1 1YQ5 1YQD 1YQH 1YRK 1YRR

1YZ4 1YZH 1YZY 1Z1Y 1Z2W 1Z2Z 1Z3E 1Z6U 1Z72 1Z85 1Z96 1ZB1 1ZC6 1ZEE

1ZH8 1ZHH 1ZJ8 1ZKC 1ZKD 1ZKI 1ZLP 1ZPL 1ZQ9 1ZSO 1ZTD 1ZUO 1ZUY 1ZVT

1ZY4 1ZY7 1ZYS 1ZZW 2A0S 2A1K 2A2M 2A2R 2A35 2A5L 2A6A 2A6P 2A70 2A8N

2A9D 2AB5 2ABQ 2ABW 2ACV 2AE2 2AEE 2AFB 2AFC 2AFW 2AG4 2AHF 2AHX 2AIB

2AJA 2AMX 2ANX 2APO 2AQ6 2AQP 2AR0 2ARC 2AS9 2ASU 2AUW 2AVN 2AYT 2AZ4

2B0R 2B1L 2B2N 2B3R 2B3Y 2B4M 2B6C 2B82 2B8N 2B97 2B9D 2B9H 2B9R 2BBA

2BCO 2BGH 2BHG 2BJD 2BJN 2BKL 2BKM 2BLF 2BLN 2BM5 2BON 2BPH 2BPO 2BPS

2BRW 2BRY 2BSJ 2BT6 2BU3 2BV4 2BVF 2BWF 2BWR 2BYC 2BZ9 2C0G 2C3I 2C40

2C5U 2C77 2C8J 2C95 2CAR 2CAY 2CB8 2CC0 2CC3 2CFA 2CFO 2CGK 2CI5 2CIA

2CJ4 2CJP 2CKD 2CN3 2CO5 2CU3 2CUN 2CV8 2CVH 2CVI 2CX6 2CX7 2CXD 2CY9

2D1G 2D1H 2D42 2D4G 2D5C 2DB0 2DB7 2DBS 2DC0 2DC3 2DC4 2DEB 2DFJ 2DFY

2DI4 2DOK 2DPR 2DPS 2DPY 2DQ4 2DQA 2DQL 2DQW 2DS5 2DSJ 2DTC 2DUR 2DXU

2DYJ 2E12 2E2E 2E3P 2E5Y 2E85 2E8G 2E8Y 2EAB 2EAV 2EAY 2EBE 2EBJ 2EEN

2EF8 2EG4 2EGG 2EGJ 2EGZ 2EHP 2EIH 2EIS 2EIX 2EJA 2EJN 2EJQ 2EKC 2ERV

2EUC 2EX0 2EXV 2F20 2F23 2F25 2F31 2F37 2F3O 2F4E 2F4M 2F51 2F5J 2F5Y

2F7L 2F8M 2F8Y 2F9H 2F9S 2FAE 2FAO 2FAZ 2FCO 2FCT 2FCW 2FEA 2FFG 2FFI

2FFU 2FH5 2FHP 2FHQ 2FHZ 2FIA 2FJR 2FK5 2FLU 2FN0 2FNA 2FNO 2FP1 2FPR

2FSH 2FSK 2FT0 2FTR 2FTX 2FU4 2FV7 2FVU 2FYX 2FZF 2G09 2G3W 2G58 2G6T

2G7Z 2G8L 2GA1 2GAI 2GAK 2GCL 2GCO 2GD9 2GDQ 2GEC 2GF3 2GF4 2GFF 2GGS

2GGZ 2GHA 2GHV 2GIY 2GJ3 2GLZ 2GMF 2GMQ 2GN4 2GOM 2GOP 2GP4 2GPY 2GPZ

2GRR 2GRU 2GS9 2GSO 2GSV 2GT1 2GV9 2GVY 2GZ6 2GZB 2GZX 2H1C 2H1E 2H1Y

2H34 2H3H 2H7Z 2H98 2HAL 2HB0 2HBA 2HDI 2HDV 2HEK 2HEV 2HF1 2HF2 2HF9

2HFS 2HI0 2HIH 2HIN 2HJ3 2HJV 2HKE 2HLC 2HLS 2HNL 2HP4 2HPL 2HQ4 2HQ9

2HQY 2HRA 2HRV 2HSI 2HTA 2HU9 2HW6 2HWY 2I02 2I0E 2I1S 2I1Y 2I27 2I2O

2I4R 2I4S 2I58 2I5G 2I6H 2I6K 2I6L 2I74 2I9X 2IA1 2IAB 2IB0 2IBN 2IC2

2ICH 2ID1 2IDL 2IEP 2IEW 2IG3 2IM8 2IMZ 2IN5 2INW 2IQJ 2IRP 2IRU 2ISM

2ITB 2ITM 2IUY 2IXN 2IXO 2IXS 2IYG 2IYK 2IZ6 2J16 2J1V 2J4D 2J5B 2J5Y

2J8I 2J9W 2JBV 2JBX 2JCB 2JD4 2JDA 2JDJ 2JE8 2JEM 2JEP 2JF7 2JFZ 2JGB

2JHN 2JIG 2JIK 2JJ7 2JK9 2JKG 2JKH 2MSB 2NLI 2NLV 2NOG 2NRV 2NS9 2NTE

2NTT 2NTX 2NUJ 2NV0 2NW0 2NYU 2NZ5 2O16 2O1E 2O1K 2O1Q 2O2K 2O2T 2O30

2O3B 2O3I 2O5A 2O5H 2O5N 2O62 2O6L 2O6P 2O7G 2O8S 2OA9 2OAF 2OB3 2OB9

2OD0 2OD4 2ODA 2ODM 2OEE 2OER 2OFC 2OFP 2OFY 2OG1 2OGI 2OJL 2OKC 2OKG

2OL7 2OLW 2OM6 2OOC 2OOI 2OPI 2OQ1 2OQA 2OQB 2OQC 2OQQ 2ORV 2ORW 2OTN

2OUS 2OVS 2OWA 2OWL 2OXC 2OXL 2OY9 2OYK 2OZ5 2OZJ 2OZV 2OZZ 2P08 2P0M

2P11 2P12 2P13 2P1A 2P1G 2P35 2P38 2P3P 2P4P 2P4Z 2P62 2P6C 2P6H 2P6X

2P7I 2P8J 2P9R 2PA2 2PBF 2PD2 2PF6 2PFI 2PHK 2PIE 2PIF 2PK3 2PKE 2PKF

2PLG 2PLR 2PMA 2PNZ 2POF 2PPT 2PPW 2PQG 2PQV 2PR7 2PR8 2PRV 2PRX 2PSP

2PW0 2PX6 2PYG 2PZ0 2PZE 2PZI 2Q03 2Q0N 2Q24 2Q2B 2Q2G 2Q3F 2Q3G 2Q3X

2Q5C 2Q5W 2Q6O 2Q7T 2Q7X 2Q83 2Q8X 2Q9O 2QA9 2QAI 2QB7 2QCQ 2QCU 2QCX

2QDQ 2QDR 2QE8 2QEB 2QF4 2QF9 2QG3 2QH5 2QH9 2QHQ 2QJ3 2QJ8 2QJV 2QJZ

2QKH 2QKL 2QMW 2QN4 2QND 2QOS 2QRR 2QS8 2QSJ 2QSQ 2QSX 2QTY 2QV0 2QV5

2QX5 2QXX 2QXY 2QY1 2QY6 2QYC 2QYV 2QZ7 2QZA 2QZC 2R15 2R19 2R25 2R2A

2R5X 2R6J 2R6O 2R6Z 2R76 2R85 2R8B 2R8Q 2R8R 2RA4 2RAD 2RB6 2RBD 2RBG

vii
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2REE 2REK 2RFM 2RG4 2RG8 2RI9 2RJI 2RJW 2RKK 2RL8 2RMP 2SCP 2SQC 2UVF

2UWI 2UXT 2V1Q 2V1Y 2V25 2V27 2V2F 2V33 2V3T 2V3Z 2V5C 2V5E 2V6U 2V6V

2V8P 2V94 2V9B 2V9T 2VA8 2VCY 2VD3 2VE3 2VGX 2VH1 2VH3 2VHA 2VHF 2VK7

2VKP 2VLQ 2VLU 2VNG 2VOB 2VOK 2VOZ 2VP8 2VPN 2VPP 2VPV 2VQ3 2VQH 2VQQ

2VRN 2VVE 2VVG 2VVW 2VXB 2VXG 2VYI 2VZC 2W00 2W1J 2W1K 2W2G 2W3G 2W3Y

2W50 2W53 2W56 2W59 2W5F 2W5Z 2W7A 2W7V 2W7Z 2W8D 2W8M 2W9J 2W9T 2W9X

2WB7 2WB9 2WCR 2WD6 2WE8 2WEE 2WEK 2WFH 2WFV 2WG7 2WHN 2WIV 2WJ9 2WKF

2WNH 2WNY 2WOD 2WOK 2WP4 2WPX 2WRZ 2WTP 2WUQ 2WVQ 2WZ1 2X02 2X03 2X0K

2X1Q 2X32 2X3J 2X4D 2X4K 2X5Q 2X61 2X6R 2X7X 2X8S 2X98 2X9J 2X9Q 2XCJ

2XE4 2XEP 2XES 2XET 2XEX 2XFA 2XFV 2XGG 2XGU 2XHA 2XHF 2XHS 2XI8 2XI9

2XMJ 2XMO 2XMX 2XOC 2XOL 2XOT 2XPP 2XQX 2XR1 2XSS 2XSW 2XT2 2XTL 2XTM

2XTY 2XUA 2XUS 2XVC 2XVM 2XXN 2XYI 2XZ4 2XZ8 2XZI 2Y1H 2Y2X 2Y43 2Y4J

2Y7E 2Y7I 2Y7S 2Y8E 2Y8U 2Y9M 2YB7 2YCH 2YEQ 2YFQ 2YG2 2YHN 2YJ6 2YJG

2YKT 2YMY 2YN1 2YN5 2YN7 2YNA 2YOA 2YOC 2YOR 2YQY 2YQZ 2YR1 2YV9 2YVR

2YWW 2YXD 2YXE 2YXO 2YXW 2YY6 2YYB 2YYS 2YYV 2Z0U 2Z22 2Z26 2Z5B 2Z5D

2Z64 2Z73 2Z8F 2Z8G 2ZAY 2ZBI 2ZC2 2ZCA 2ZFU 2ZGY 2ZKT 2ZMV 2ZOS 2ZOU

2ZSI 2ZTB 2ZU9 2ZVD 2ZVR 2ZWA 2ZWI 2ZWR 2ZX2 2ZXD 2ZYR 2ZZ8 2ZZV 3A07

3A0Y 3A1D 3A1S 3A21 3A24 3A35 3A43 3A45 3A4M 3A4R 3A4T 3A54 3A5I 3A6S

3A9F 3A9L 3AAG 3AAY 3AB1 3ABG 3ADR 3AEH 3AEI 3AFF 3AFM 3AGX 3AHN 3AIH

3AJ6 3AJA 3AJR 3AKJ 3AL3 3AMI 3AMN 3ANW 3AOF 3APQ 3APR 3APT 3APU 3APZ

3AQ9 3AQG 3AQL 3AS5 3ASL 3ATY 3AU4 3AVR 3AWU 3AXA 3AXD 3AYC 3AZD 3AZO

3B0F 3B0P 3B4N 3B4Q 3B5E 3B5I 3B5Q 3B6H 3B73 3B7S 3B85 3BA3 3BBD 3BBZ

3BDV 3BE3 3BEU 3BF7 3BFV 3BGA 3BGE 3BGH 3BGY 3BH4 3BHD 3BHW 3BIT 3BJ4

3BMX 3BNW 3BO6 3BOH 3BOO 3BP3 3BQ9 3BQO 3BQP 3BRN 3BRS 3BS6 3BS7 3BTP

3BUS 3BVO 3BVP 3BW1 3BWS 3BWV 3BXP 3BXW 3BYP 3BZB 3BZY 3C0G 3C0U 3C1A

3C3R 3C4N 3C4S 3C4V 3C57 3C5N 3C7M 3C8C 3C8L 3C9F 3C9G 3C9H 3C9Q 3CB2

3CBW 3CEG 3CEI 3CEU 3CEX 3CFU 3CG6 3CG7 3CHH 3CIO 3CIT 3CJP 3CK1 3CKC

3CLK 3CNH 3CNR 3CNY 3COB 3COK 3COL 3COV 3CP7 3CPT 3CQB 3CQC 3CQL 3CRN

3CT6 3CU2 3CU5 3CUC 3CV0 3CWC 3CWF 3CWV 3CX3 3CYG 3CZ1 3CZB 3CZH 3D21

3D34 3D37 3D3B 3D3Q 3D4J 3D59 3D5J 3D5P 3D6I 3D6R 3D6W 3D7A 3D8C 3D8D

3D8U 3D9Y 3DA5 3DAD 3DB0 3DBA 3DBG 3DC6 3DCD 3DDE 3DDL 3DEP 3DEU 3DGP

3DKA 3DLQ 3DME 3DNF 3DNS 3DNT 3DO8 3DOH 3DR2 3DRF 3DRN 3DRW 3DS2 3DSK

3DTB 3DTN 3DUP 3DWM 3DWV 3DXO 3DXQ 3DXR 3DYJ 3DYN 3DZV 3E0X 3E11 3E2V

3E3R 3E48 3E4W 3E57 3E58 3E7H 3E7J 3E9C 3E9G 3EA0 3EAE 3EAG 3EB8 3EB9

3EC3 3EC4 3EC9 3ECN 3ECQ 3ECR 3EDN 3EDP 3EDV 3EE6 3EEA 3EEF 3EEQ 3EFP

3EGR 3EHD 3EIP 3EJW 3ELK 3EMX 3EN9 3ENC 3ENP 3EO6 3EOP 3EOQ 3EOZ 3EP0

3EPS 3EQX 3EQZ 3ERP 3ERX 3ESA 3ESL 3ETC 3ETO 3ETQ 3ETZ 3EU7 3EUS 3EVI

3EVY 3EWI 3EWL 3EWM 3EWO 3EYY 3EZH 3F08 3F0P 3F13 3F1P 3F42 3F4A 3F5H

3F66 3F69 3F6C 3F6I 3F6K 3F6O 3F70 3F7E 3F7Q 3F8B 3F95 3F9U 3FB9 3FBG

3FCD 3FCG 3FCM 3FD4 3FD7 3FDI 3FDW 3FDX 3FE3 3FE4 3FF1 3FF5 3FG7 3FGV

3FHW 3FID 3FIL 3FJV 3FLA 3FLE 3FLT 3FM2 3FM3 3FN1 3FN5 3FNC 3FO3 3FO5

3FPK 3FPN 3FPR 3FQD 3FQM 3FSO 3FUT 3FVD 3FVV 3FVW 3FW3 3FYF 3FZY 3G12

3G1E 3G1J 3G1P 3G23 3G2F 3G2M 3G3R 3G3S 3G46 3G48 3G4D 3G4E 3G5J 3G68

3G8K 3GAE 3GAX 3GAZ 3GBV 3GBY 3GD4 3GDI 3GF5 3GF6 3GFF 3GFV 3GGN 3GHD

3GI7 3GID 3GJ0 3GKN 3GKX 3GLV 3GME 3GMG 3GNL 3GO6 3GOC 3GPK 3GPV 3GQS

3GRA 3GRD 3GRI 3GRN 3GRO 3GRZ 3GUD 3GUE 3GUU 3GV4 3GVE 3GWB 3GWL 3GWR

3GXH 3GYC 3GYZ 3GZ5 3GZA 3H05 3H1Q 3H2B 3H2S 3H30 3H3A 3H3N 3H5J 3H5L

3H7J 3H7O 3H8Q 3H8V 3HA2 3HAM 3HBW 3HCS 3HCW 3HCY 3HDF 3HDT 3HEB 3HFH

3HGT 3HHF 3HHI 3HIS 3HJ4 3HJ6 3HJG 3HK0 3HKL 3HKS 3HKV 3HL1 3HL6 3HLK

3HM4 3HME 3HMT 3HN0 3HN5 3HO6 3HOB 3HPE 3HPK 3HQR 3HRQ 3HRS 3HS3 3HU5

3HV1 3HV2 3HWJ 3HWO 3HWP 3HY0 3HYJ 3I00 3I1A 3I1I 3I3Q 3I3W 3I41 3I4O

3I57 3I5O 3I5R 3I5W 3I6D 3I6S 3I7J 3I83 3I8N 3I9F 3IA1 3IA8 3IAU 3IB3

3IBW 3IBX 3IC5 3ICY 3ID9 3IDF 3IE4 3IE5 3IEG 3IGE 3IHS 3IHT 3IHV 3IIC

3IJL 3IJM 3IJW 3IKB 3INO 3IO1 3IOL 3IPF 3IPJ 3IPO 3IQ0 3IQ2 3IQC 3IQU
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3IR9 3IRB 3IS6 3ITE 3ITQ 3ITW 3IU1 3IUK 3IUO 3IUP 3IUS 3IUW 3IUY 3IV7

3IVL 3IVV 3IWF 3IWG 3IX1 3IX3 3IX7 3IX9 3JQ1 3JR7 3JRR 3JRU 3JSB 3JSL

3JT0 3JTN 3JUU 3JW8 3JWI 3JXF 3JXO 3K0Z 3K1R 3K1W 3K2A 3K2N 3K2O 3K2Z

3K51 3K5O 3K6F 3K6O 3K7B 3K85 3K8G 3K8R 3K9V 3KA5 3KB1 3KB2 3KBQ 3KBY

3KD3 3KD4 3KD6 3KDG 3KEA 3KEP 3KEW 3KEZ 3KF6 3KFA 3KG8 3KG9 3KGK 3KHE

3KHN 3KK7 3KKS 3KLQ 3KM5 3KMA 3KMI 3KMR 3KNB 3KPE 3KS9 3KSM 3KSU 3KTZ

3KUZ 3KWR 3KY9 3KYJ 3KZY 3L01 3L0Q 3L0R 3L12 3L15 3L18 3L32 3L46 3L50

3L6I 3L6T 3L6V 3L6X 3L7O 3L81 3L8C 3L8E 3L8M 3L9J 3LAE 3LAG 3LAZ 3LB2

3LET 3LF5 3LFR 3LFT 3LG3 3LGB 3LHN 3LHX 3LID 3LIF 3LIU 3LJB 3LJS 3LKB

3LKL 3LLM 3LLP 3LLZ 3LM2 3LMH 3LMN 3LNN 3LNY 3LQ9 3LQM 3LS1 3LS8 3LST

3LUO 3LVC 3LWE 3LX4 3LX6 3LXQ 3LY0 3LYP 3LYX 3M33 3M6Z 3M7A 3M8J 3M8T

3MAB 3MAL 3MAZ 3MB4 3MBC 3MC9 3MCA 3MCB 3MCF 3MCS 3MCW 3MD1 3MD9 3MDF

3ME4 3ME7 3MEA 3MER 3MFD 3MG1 3MGD 3MGG 3MH9 3MIT 3MIZ 3MJQ 3MK4 3MKL

3MNL 3MOZ 3MPC 3MPD 3MQ2 3MR0 3MTI 3MTK 3MTR 3MUQ 3MUX 3MVC 3MVP 3MWB

3MWX 3MX3 3MXO 3MYU 3MYV 3MYX 3MZ2 3N01 3N08 3N10 3N1E 3N4I 3N6Y 3N72

3N89 3N9B 3N9V 3NA5 3NBC 3NCE 3NCX 3NDA 3NDO 3NEK 3NEQ 3NFH 3NFQ 3NGF

3NHM 3NI7 3NIQ 3NJ2 3NJE 3NK6 3NKL 3NKU 3NME 3NMW 3NNG 3NNN 3NNS 3NO8

3NPF 3NPP 3NQN 3NR1 3NRF 3NRH 3NRL 3NRX 3NT8 3NTK 3NTX 3NUF 3NW0 3NWP

3NY3 3NYI 3NZE 3NZN 3NZZ 3O0A 3O0L 3O0Q 3O0X 3O14 3O2U 3O53 3O5Y 3O60

3O66 3O6W 3O7A 3O83 3O8Q 3OAJ 3OBE 3OBF 3OBH 3OBL 3OBQ 3OBY 3OCO 3OCP

3OG5 3OG6 3OG7 3OGN 3OHE 3OIQ 3OKW 3OKZ 3OL3 3OMD 3OMT 3ON3 3ON9 3ONM

3OOV 3OOX 3OP6 3OPE 3OQI 3OT2 3OTN 3OVP 3OWC 3OWG 3OXP 3OY2 3OYO 3OYY

3OZD 3OZI 3OZX 3P09 3P0U 3P1U 3P2E 3P3Q 3P3V 3P5R 3P69 3P6A 3P9X 3PAF

3PC6 3PD7 3PE5 3PES 3PET 3PF8 3PG7 3PGG 3PGS 3PH9 3PHG 3PHX 3PIV 3PJP

3PM6 3PMC 3PMG 3PNR 3PQH 3PQU 3PRB 3PSM 3PSQ 3PT3 3PT8 3PU8 3PVE 3PWX

3Q18 3Q1I 3Q2J 3Q49 3Q6K 3Q6V 3Q72 3Q7R 3Q87 3QAT 3QAX 3QB8 3QC2 3QC4

3QE2 3QEE 3QEK 3QF2 3QHB 3QHP 3QHQ 3QI7 3QIJ 3QIS 3QN9 3QPI 3QR2 3QR7

3QRC 3QSL 3QSZ 3QT5 3QTA 3QTG 3QTM 3QU5 3QUF 3QVL 3QVM 3QW9 3QWG 3QX1

3QYE 3QYY 3QZ4 3QZM 3QZR 3R07 3R0J 3R15 3R1J 3R27 3R41 3R42 3R4R 3R4S

3R5Z 3R62 3R6A 3R7A 3R7G 3RA5 3RAO 3RAU 3RB5 3RBY 3RC4 3RDK 3RE1 3RE4

3RFS 3RGC 3RGH 3RH0 3RHY 3RHZ 3RI0 3RJT 3RK1 3RKC 3RLS 3RMH 3RNQ 3RO3

3ROI 3ROT 3RP2 3RPJ 3RQ9 3RS1 3RUX 3RV6 3RY0 3RY3 3S0R 3S0T 3S2X 3S4K

3S5B 3S5F 3S5W 3S63 3S6E 3S7D 3S8I 3S8K 3S8P 3S93 3S95 3S9U 3SAF 3SAO

3SCZ 3SD4 3SEI 3SEO 3SFW 3SG8 3SGH 3SHP 3SIM 3SIT 3SJ5 3SKV 3SLU 3SLZ

3SO6 3SOJ 3SOK 3SON 3SOV 3SP1 3SP4 3SPE 3SQF 3SQJ 3SRI 3STY 3SUB 3SUK

3SWH 3SYL 3SZ6 3T0P 3T13 3T1O 3T47 3T4L 3T5G 3T5X 3T6K 3T8B 3T9G 3T9K

3TB6 3TBH 3TC8 3TCA 3TCN 3TCR 3TCV 3TDN 3TDQ 3TDV 3TE8 3TEB 3TEJ 3TEK

3TEV 3TFG 3TII 3TIQ 3TKF 3TL1 3TLQ 3TM8 3TOD 3TOV 3TP2 3TP9 3TQF 3TQW

3TRB 3TSA 3TSJ 3TSM 3TTM 3TUF 3TV1 3TVA 3TVT 3TWD 3TWE 3TWF 3TWK 3TX3

3TYQ 3TZG 3TZT 3U0H 3U0J 3U1D 3U1U 3U1X 3U21 3U23 3U3B 3U4T 3U4Y 3U4Z

3U7R 3U7Z 3U80 3U8V 3U96 3U9J 3U9Q 3UAN 3UC4 3UEC 3UES 3UGF 3UHA 3UID

3UIW 3UL3 3ULJ 3ULL 3ULT 3ULY 3UMZ 3UN7 3UO3 3UP1 3UP3 3UPV 3UR8 3URR

3USH 3USS 3USY 3UT4 3UUG 3UV0 3UV1 3UXN 3UY7 3UYJ 3V0D 3V1E 3V30 3V33

3V3L 3V43 3V48 3V67 3V69 3V8D 3V8I 3V97 3V98 3VAS 3VAY 3VCC 3VCF 3VDH

3VEJ 3VF1 3VFZ 3VHS 3VJA 3VJE 3VJP 3VK5 3VKG 3VMT 3VO2 3VOQ 3VPP 3VPS

3VRC 3VTA 3VTH 3VTX 3VU2 3VU4 3VU9 3VUP 3VUS 3VV1 3VV3 3VV5 3VX3 3VX4

3VYP 3VZI 3W08 3W0E 3W0K 3W19 3W1O 3W2Y 3W3W 3W4S 3W57 3W5F 3W5S 3W6P

3W7T 3W9S 3W9V 3WA4 3WA8 3WAE 3WAS 3WDF 3WDW 3WE2 3WE5 3WEA 3WEU 3WFI

3WH9 3WHT 3WI7 3WJ9 3WKY 3WL2 3WL4 3WL6 3WMD 3WMG 3WMI 3WNO 3WOL 3WPW

3WQO 3WUR 3WV4 3WWN 3WX1 3WYD 3ZBD 3ZBO 3ZD2 3ZFI 3ZG6 3ZGJ 3ZH5 3ZHO

3ZIH 3ZIL 3ZIT 3ZIU 3ZJE 3ZK9 3ZL1 3ZME 3ZMR 3ZO9 3ZPY 3ZQS 3ZRG 3ZTP

3ZWF 3ZXC 3ZXF 3ZXN 3ZY7 3ZYG 3ZYL 3ZYR 3ZYW 4A0E 4A0Z 4A2O 4A37 4A48

4A6F 4A6V 4A7U 4A7W 4A8H 4AAZ 4ACV 4ADN 4ADT 4ADY 4ADZ 4AE4 4AEE 4AEF

4AGG 4AHC 4AJW 4AKL 4AKM 4ALF 4AM6 4AMJ 4APX 4AQN 4ARV 4ASR 4AU9 4AUC
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4AUP 4AVB 4AVR 4AWX 4AXK 4AXN 4AY0 4AYA 4AYG 4B0Z 4B1Y 4B2N 4B3B 4B45

4B5Q 4B61 4B6G 4B6M 4B6X 4B8B 4B8E 4B91 4B93 4B9G 4BD2 4BEG 4BFA 4BG2

4BGO 4BHR 4BI3 4BLU 4BND 4BOP 4BPG 4BPZ 4BQ4 4BQ9 4BQN 4BQU 4BRC 4BS6

4BSZ 4BUC 4BUU 4BVQ 4BVX 4BWO 4BWV 4BX8 4BXH 4C0R 4C16 4C1D 4C1L 4C1S

4C23 4C29 4C3D 4C76 4C7A 4C7D 4C8B 4C97 4C9Y 4CA1 4CB7 4CBP 4CDJ 4CEM

4CGR 4CGS 4CGY 4CHF 4CHH 4CI7 4CI8 4CJ0 4CJ9 4CK4 4CMR 4CQ8 4CRW 4CSD

4CU9 4CUA 4CXF 4CXV 4CZJ 4CZX 4D05 4D0O 4D0Y 4D2C 4D2O 4D8I 4D9I 4D9S

4DBG 4DCB 4DCZ 4DEY 4DGF 4DGH 4DHK 4DI8 4DIX 4DJB 4DJG 4DKC 4DKN 4DLH

4DLQ 4DM4 4DO4 4DO7 4DOI 4DOK 4DOO 4DOV 4DQ9 4DQZ 4DS2 4DSD 4DT5 4DTE

4DY0 4DYH 4DYN 4DYW 4DZM 4DZZ 4E15 4E19 4E1Y 4E3Y 4E57 4E5V 4E5W 4E6F

4E7S 4E8U 4E94 4E9J 4EBR 4ECO 4EDH 4EE6 4EEI 4EET 4EF0 4EFO 4EG0 4EGD

4EH1 4EHS 4EHU 4EI0 4EI7 4EIB 4EIR 4EIS 4EIV 4EJR 4EMT 4EP4 4EPP 4EQB

4EQQ 4ERC 4ERY 4ES8 4ETV 4ETZ 4EUK 4EUU 4EVQ 4EVU 4EVW 4EW5 4EWI 4EWL

4EYG 4EYZ 4EZG 4F0D 4F14 4F1J 4F27 4F3V 4F3Y 4F44 4F4F 4F7K 4F7O 4F82

4FCH 4FCZ 4FD4 4FD9 4FDI 4FDX 4FDY 4FEK 4FET 4FGQ 4FHR 4FID 4FKB 4FKZ

4FP1 4FPW 4FQ5 4FQD 4FRF 4FRX 4FXQ 4FYP 4FYT 4FZL 4FZP 4FZV 4G0I 4G0M

4G0S 4G1I 4G2B 4G2C 4G2U 4G37 4G3B 4G3C 4G3V 4G4K 4G4L 4G4M 4G6Q 4G6U

4G7X 4G8K 4G9M 4G9S 4GBF 4GBO 4GBS 4GC1 4GCN 4GCS 4GE6 4GEK 4GGG 4GHB

4GIW 4GKC 4GKF 4GKG 4GKM 4GKP 4GL6 4GMN 4GNE 4GNI 4GNS 4GNU 4GOF 4GQ6

4GUC 4GVB 4GVF 4GVO 4GXB 4GXL 4GYT 4H05 4H0A 4H0C 4H0K 4H2D 4H4D 4H5I

4H5S 4H61 4H6Q 4H7X 4H87 4H8F 4H8M 4HAP 4HBQ 4HC8 4HCE 4HCI 4HDH 4HEH

4HEO 4HEQ 4HFS 4HG2 4HH6 4HHV 4HI7 4HI8 4HIA 4HIL 4HJD 4HJZ 4HKE 4HKG

4HL0 4HL2 4HLS 4HN9 4HNE 4HNH 4HP8 4HQZ 4HR1 4HRZ 4HS5 4HSS 4HT3 4HU5

4HW8 4HWU 4HWV 4HY4 4HYJ 4HYL 4HYN 4HZR 4I1K 4I1U 4I2Z 4I3G 4I4K 4I4O

4I5T 4I6P 4I6R 4I82 4I84 4I86 4I93 4IB2 4ID2 4ID3 4IGA 4IGW 4IHE 4IHZ

4IJ5 4IJR 4IJZ 4IKN 4ILO 4ILV 4IMQ 4IN0 4IN9 4INA 4INE 4INO 4INZ 4IO2

4IU3 4IUP 4IX3 4IXA 4IXJ 4IXN 4IYB 4IZB 4IZK 4J05 4J0X 4J1Y 4J2G 4J2K

4J3H 4J5R 4J6O 4J73 4J7Q 4J8B 4J8C 4J8E 4J8S 4J9C 4JBS 4JCH 4JCW 4JDE

4JE1 4JE6 4JEM 4JES 4JF3 4JGG 4JGI 4JGP 4JGW 4JGX 4JIX 4JJ0 4JJH 4JK8

4JLI 4JMD 4JN3 4JOQ 4JPQ 4JQT 4JR6 4JT4 4JUI 4JVU 4JX0 4JXB 4JXD 4JXE

4JY3 4JZP 4JZQ 4JZZ 4K00 4K02 4K05 4K0D 4K12 4K1C 4K28 4K2W 4K35 4K3L

4K4K 4K5A 4K6J 4K7J 4K7K 4K8Y 4K9Q 4KBM 4KCE 4KDX 4KED 4KF8 4KFS 4KFW

4KGD 4KGH 4KH6 4KH7 4KH9 4KHO 4KJM 4KJR 4KMD 4KN8 4KNC 4KNK 4KP2 4KPO

4KQR 4KRG 4KRT 4KT1 4KT3 4KTW 4KUJ 4KUN 4KV2 4KV9 4KWY 4KX8 4KYU 4KYX

4L00 4L0R 4L3N 4L3R 4L3T 4L4W 4L51 4L5G 4L68 4L6S 4L6U 4L7A 4L7X 4L8I

4L9O 4L9U 4LA2 4LAS 4LBA 4LCI 4LE7 4LEB 4LEC 4LIR 4LJI 4LJL 4LK2 4LLD

4LN2 4LN9 4LNL 4LOW 4LP4 4LPS 4LQ8 4LQC 4LQX 4LS4 4LUB 4LV5 4LW8 4LWK

4LXO 4LXQ 4M0H 4M1A 4M1B 4M1Q 4M3O 4M4D 4M8R 4M91 4MAC 4MAE 4MAK 4MAL

4MDU 4ME9 4MES 4MF9 4MG3 4MH1 4MHV 4MIK 4MIX 4MJ2 4MJD 4MJG 4MJK 4MLM

4MLZ 4MM2 4MMG 4MN5 4MN7 4MNW 4MO1 4MOV 4MPB 4MPM 4MPS 4MQB 4MR0 4MTL

4MUV 4MVE 4MW0 4MY6 4MYA 4MYP 4MYV 4MZ3 4MZJ 4MZZ 4N01 4N04 4N06 4N0K

4N0R 4N0V 4N3P 4N3V 4N4U 4N6A 4N6C 4N6F 4N7F 4N7W 4N82 4N8O 4N8Y 4N9Z

4NC7 4NCR 4NE2 4NET 4NFC 4NHB 4NIR 4NJH 4NKT 4NN2 4NOF 4NOH 4NPL 4NQ8

4NSD 4NSV 4NTG 4NTQ 4NWO 4NX8 4NZV 4O1J 4O1S 4O2H 4O2I 4O2T 4O3V 4O42

4O5P 4O71 4O7H 4O7J 4O8V 4O9D 4O9K 4O9S 4OEV 4OF6 4OFK 4OFQ 4OH7 4OHJ

4OK9 4OKE 4OLK 4OLT 4OM7 4OMV 4ON1 4ONW 4ONY 4OO0 4OO4 4OPM 4OTE 4OUC

4OVS 4OVT 4OWI 4OX6 4OZE 4P0J 4P0T 4P2I 4P2L 4P32 4P3F 4P5E 4P5F 4P5N

4P7B 4P7C 4P7O 4P93 4PAB 4PAS 4PE0 4PFZ 4PH8 4PI3 4PIC 4PID 4PIV 4PKC

4PM4 4PMK 4PMO 4PN6 4PO6 4POW 4PQ1 4PQ9 4PR3 4PSF 4PSR 4PTB 4PUI 4PVC

4PXW 4PXY 4PYS 4PZ7 4Q14 4Q2T 4Q3H 4Q4K 4Q53 4Q5G 4Q60 4Q69 4Q6J 4Q6U

4Q7E 4Q7O 4Q7Q 4Q82 4Q88 4Q8L 4Q9A 4Q9B 4Q9T 4Q9W 4QAK 4QAM 4QAN 4QAS

4QBN 4QC6 4QE0 4QF3 4QGO 4QHJ 4QI0 4QJB 4QJI 4QM9 4QMI 4QO2 4QPM 4QPV

4QSE 4QT9 4QUV 4QWO 4QYB 4R01 4R1K 4R1S 4R23 4R7X 4R80 4R86 4R8O 4R8R

4R9X 4RD8 4RHA 4RHP 4RK6 4RK9 4RPC 4RS2 4TKR 4TL1 4TMX 4TQL 4TR6 4TR7

x



Appendix A

4TY0 4U13 4U4I 4U99 4U9C 4UNU 4UON 4UOP 4UP0 4UQW 4UQY 4URG 4USQ 4UUU

A.2 Testing Set PDB codes

3L6U 1Y2K 2WW4 1IFQ 2WNS 2F06 2WNW 2OFK 2BKX 4PFY 4FAJ 4GAI 4O89 3WPU

1AE9 2PMQ 2GAX 3T7Y 1VQ0 1P1C 3RPD 3LLH 1O7Z 1PL3 3ANO 2DST 3T7H 1OB8

1EP3 4HU4 3MTX 4PMZ 1N7K 3SNX 4NV5 2P97 4EFP 4NV0 1R1G 1XFF 3LJD 3PNA

4DFR 4QXD 4C27 1OO0 3NCV 3N8H 4AR9 3ORE 3H8K 1MSP 3POA 4JG9 1HDH 4KS9

2VIF 3L0S 1SE0 4A27 4IPV 3QIV 1XXL 4PU7 4KW3 1F74 2VLI 4BUB 3W42 4I9F

3KWS 3MJE 4TVY 3LYN 2F22 1LBV 4R33 1AQL 4IC3 1NRJ 4KXQ 3D3M 3D3O 1DBX

4JTM 4ALY 1QOR 4IGQ 2Q7S 1RKU 1TV8 2AVT 1EX2 1XO1 3CWR 2V6X 3D3W 2VT8

1OF5 2W70 4P3H 2QAS 3GWO 3KAL 3C3K 3NUA 4LZF 3ZXO 1XX6 2BE3 3GMX 4HFM

3AOS 2XZO 3CGG 2W9M 4B9F 3NEH 3IEV 3O7I 1Y89 3VB8 3P8A 3RC8 2NNC 3QR3

3TJ8 4JIF 3B0Z 3MMH 4K70 4CMP 3QKX 1JY5 2RE3 4GER 4AB5 4LEV 4MS4 4N65

4V24 4M8K 3VOT 2EPG 1Q6O 3W20 2V0P 2WH6 1QWR 3U4V 2OKF 2D4Y 3AJG 1Y6Z

4BE3 4TPW 4GUD 1I58 4HQM 3C8I 1VKY 1S1D 4PQH 3L41 2OOQ 1JR8 3BOF 3PQC

3C8Z 4WSO 4EAE 2IHY 3HZ4 3MES 3KOJ 4LHK 4PAG 4TWC 3H3H 2EK0 4N6J 3RG9

2WT9 2QZT 4GD5 3CB7 2HXR 3TG9 2FFY 2AC7 3RT9 1TW0 4GRJ 4ACY 1DMU 1KW2

3FPQ 3F52 1L8D 3MOL 4KE7 3B2Y 2C3V 3UOR 4EBG 2I5E 256B 3OTX 4ART 4OSE

1KZQ 4PSE 4CGX 4BQM 4UVJ 4PZ4 2CD9 3FHU 2IKK 1G4M 3POJ 1D4T 3NMR 3PP2

4L9D 4M66 4L9A 3KST 2FAW 3BFQ 3LMB 3OJI 2JI5 2JBA 2IUT 3CSX 2JBH 2QTW

2AJ7 1PCX 4GT4 4O6I 1GGP 2IFT 3R8C 3HVA 3TJ4 1AOC 4OBE 1PSR 4RCM 1OAH

1AOZ 2YPD 4I6G 3D8P 4B7L 3NAR 4PZA 2O6K 4K92 3FFV 3BQA 2XH3 2IU5 1VR9
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